Skip to main content

Some Analytical and Numerical Methods in the Theory of Wave Propagation and Diffraction

  • Chapter
  • First Online:
Wave Propagation and Diffraction

Part of the book series: Foundations of Engineering Mechanics ((FOUNDATIONS))

Abstract

This introductory chapter presents some of the methods that are useful for solving the problems of wave diffraction theory: method of separation of variables, method of power series, method of spline functions, and method of an auxiliary boundary. We also consider some algorithms for the numerical inversion of the Laplace transform, which is often used to solve the wave diffraction problems. Finally, we give a brief account of the method of multiple scales that is often used to study the propagation of transient waves.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Amerbaev, V.M., Utembaev, N.A.: Chislennyi analiz lagerrovskogo spektra (Numerical Analysis of the Laguerre Spectrum). Nauka, Alma-Ata (1982)

    MATH  Google Scholar 

  2. Avramenko, O.V., Selezov, I.T.: Analiticheskii i chislennyi analiz szhimaemosti zhidkosti pri vozbuzhdenii voln pod’emom dna (Analytical and numerical analysis of the fluid compressibility under the wave excitation by bottom rising). Gidromekhanika 68, 3–8 (1994)

    Google Scholar 

  3. Bellman, R., Kalaba, R.E., Lockett, J.A.: Numerical inversion of the laplace transform. In: Applications to Biology, Economics and Physics. Elsevier, Amsterdam (1966)

    Google Scholar 

  4. Belov, M.A.: Primenenie metoda asimptoticheskogo rasshireniya intervala dlya resheniya uravneniya teploprovodnosti (Using the method of asymptotic extension of the interval in solving the heat equation). In: Elektrodinamika i mekhanika sploshnykh sred (Electrodynamics and Mechanics of Continuous Media), pp. 101–108. Pēteris Stučka Latvian State University, Riga (1982)

    Google Scholar 

  5. Belov, M.A., Tsirulis, T.T.: Asimptoticheskie metody obrashcheniya integralnykh preobrazovanii (Asymptotic Methods of the Inversion of Integral Transforms). Zinatne, Riga (1985)

    MATH  Google Scholar 

  6. Berkhoff, J.C.W.: Linear wave propagation problems and finite element method. In: Finite Elements in Fluids: Viscous Flow and Hydrodynamics, vol. 1, pp. 251–264. Wiley, London (1975)

    Google Scholar 

  7. Born, M.: Optik. Springer, Berlin (1933)

    Google Scholar 

  8. Bostrom, A., Kristensson, C.: Scattering of a pulsed Rayleigh wave by a spherical cavity in an elastic half space. Wave Motion 2, 137–143 (1983)

    Article  MATH  Google Scholar 

  9. Bremmer, H.: The W.K.B. approximation as the first term of a geometric-optical series. Comm. Pure Appl. Math. 4, 105–115 (1951)

    Google Scholar 

  10. Brigham, E.O.: The Fast Fourier Transform. Prentice-Hall, Englewood Cliffs (1974)

    MATH  Google Scholar 

  11. Chow, E.P., Jeffreson, C.P.: Application of numerical Laplace transform inversion techniques to the analysis of the dynamics of short parallel-plate packed beds. Chem. Eng. Austral. 2, 11–15 (1977)

    Google Scholar 

  12. Courant, R.: Methods of mathematical physics. In: Partial Differential Equations, vol. 2. Interscience, New York (1962)

    Google Scholar 

  13. Crump, K.S.: Numerical inversion of Laplace transforms using a Fourier series approximation. J. Assoc. Comput. Math. 23, 89–96 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  14. Debnath, L., Thomas, J.G.: On finite Laplace transformation with applications. Zeitschrift für Angewandte Mathematik und Mechanik 56(12), 559–563 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  15. Doetsch, G.: Anleitung zum praktischen Gebrauch der Laplace-Transformation. R. Oldenbourg, München (1956)

    MATH  Google Scholar 

  16. Doyle, J.F.: Spectral analysis of coupled thermoelastic waves. J. Therm. Stresses 11(3), 175–185 (1988)

    Article  Google Scholar 

  17. Dubner, R., Abate, J.: Numerical inversion of Laplace transforms by relating them to the finite Fourier cosine transforms. J. Assoc. Comput. Math. 15, 115–123 (1968)

    Article  MathSciNet  MATH  Google Scholar 

  18. Dunford, N., Schwartz, J.T.: Linear operators, part 2. In: Spectral Theory, Self Adjoint Operators in Hilbert space. Interscience, New York (1963)

    Google Scholar 

  19. Durbin, F.: Numerical inversion of Laplace transforms: an efficient improvement to Dubner and Abate’s method. Comput. J. 17, 371–376 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  20. Engquist, B., Majda, A.: Radiation boundary conditions for acoustic and elastic wave calculations. Comm. Pure Appl. Math. 32, 313–357 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  21. Forsythe, G.E., Malcolm, M.A., Moler, C.B.: Mechanical Methods for Mathematical Computations. Prentice-Hall, Englewood Cliffs (1976)

    MATH  Google Scholar 

  22. Galazyuk, V.A.: Metod polinomov Chebysheva-Lagerra v smeshannoi zadache dlya linei-nogo differentsialnogo uravneniya vtorogo poryadka s postoyannymi koeffitsientami (Method of Chebyshev-Laguerre polynomials in a mixed problem for a second-order linear differential equation with constant coefficients). Dopovidi AN URSR. Ser. A 1, 3–7 (1981)

    Google Scholar 

  23. Galazyuk, V.A., Gorechko, A.N.: Issledovanie nestatsionarnykh volnovykh protsessov v vyazkoi szhimaemoi zhidkosti metodom polinomov Chebysheva-Lagerra (Investigating nonstationary wave processes in a viscous compressible fluid by the method of Chebyshev-Laguerre polynomials). Dopovidi AN URSR. Ser. A 5, 31–35 (1981)

    Google Scholar 

  24. Gautesen, A.K., de Hoop, M.V.: Uniform asymptotic expansion of the generalized Bremmer series. SIAM J. Appl. Math. 60(4), 1302–1329 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  25. Gerber, H.: First one hundred zeros of J 0(x) accurate to 19 significant figures. Math. Comput. 18, 319–322 (1964)

    Google Scholar 

  26. Givoli, D., Keller, J.B.: Non-reflecting boundary conditions for elastic waves. Wave Motion 12(3), 261–279 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  27. Gnoenskii, L.S., Kamenskii, G.A., Elsgolts, L.E.: Matematicheskie osnovy teorii upravlyaemykh sistem (Mathematical Foundations of the Theory of Controlled Systems). Nauka, Moscow (1969)

    MATH  Google Scholar 

  28. Gordon, P.F.: Accurate transform inversion in the elastodynamics of heterogeneous media. Trans. ASME. E 44(2), 352–354 (1977)

    Article  MATH  Google Scholar 

  29. Grote, M.J.: Nonreflecting boundary conditions for time dependent wave propagation. Research Report No. 2000–04, Eidgenössische Technische. Hochschule, Zürich (2000)

    Google Scholar 

  30. Grote, M.J., Keller, J.B.: Exact nonreflecting boundary conditions for the time dependent wave equation. SIAM J. Appl. Math. 55, 280–297 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  31. Grote, M.J., Keller, J.B.: Nonreflecting boundary conditions for time dependent scattering. J. Comput. Phys. 127, 52–65 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  32. Grote, M.J., Keller, J.B.: Nonreflecting boundary conditions for Maxwell’s equations. J. Comput. Phys. 139, 327–342 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  33. Jones, D.S.: The scattering of long electromagnetic waves. Quart. J. Mech. Appl. Math. 33(1), 105–122 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  34. Kevorkian, J., Cole, J.D.: Multiple Scale and Singular Perturbation Methods. Springer, New York (1996)

    Book  MATH  Google Scholar 

  35. Krylov, V.I., Skoblya, N.S.: A Handbook of Methods of Approximate Fourier Transformation and Inversion of the Laplace Transformation. Mir Publishers, Moscow (1977)

    Google Scholar 

  36. Kryvonos, Yu.G., Kornilov, I.E., Selezov, I.T.: Ob odnom metode issledovaniya dinamicheskoi ustoichivosti sistemy uprugaya poverkhnost–vyazkaya zhidkost (On one method of investigating the dynamic stability of the elastic surface–viscous fluid system). Preprint, Institute of Cybernetics AN USSR, Kiev (1982)

    Google Scholar 

  37. Ladyzhenskaya, O.A.: The Boundary Value Problems of Mathematical Physics. Springer, New York (1985)

    Book  MATH  Google Scholar 

  38. Lanczos, C.: Applied Analysis. Prentice-Hall, Englewood Cliffs (1956)

    MATH  Google Scholar 

  39. Miller, M.K., Guy, W.T.: Numerical inversion of the Laplace transform by use of Jacobi polynomials. SIAM J. Numer. Anal. 3, 624–635 (1966)

    Article  MathSciNet  MATH  Google Scholar 

  40. Moodie, E.B., Barday, D.W., Tait, R.T.: A boundary value problem for fluid-filled viscoelastic tubes. Math. Model. 4, 195–207 (1983)

    Article  MATH  Google Scholar 

  41. Narayanan, G.V., Beskos, D.E.: Use of dynamic influence coefficients in forced vibration problems with the aid of fast Fourier transform. Comput. Struct. 9(2), 145–150 (1978)

    Article  MATH  Google Scholar 

  42. Nayfeh, A.H.: Perturbation Methods. Wiley–VCH Verlag, Weinheim (2004)

    Google Scholar 

  43. Papoulis, A.: A new method of inversion of the Laplace transform. Quart. Appl. Math. 14, 405–414 (1957)

    Article  MathSciNet  MATH  Google Scholar 

  44. Paskaramoorthy, R., Shah, A.H., Datta, S.K.: Scattering of flexural waves by cavities in a plate. Int. J. Solids Struct. 25(10), 1177–1191 (1989)

    Article  MATH  Google Scholar 

  45. Piessens, R.: A bibliography on numerical inversion of the Laplace transforms and its applications. J. Comp. Appl. Math. 1(2), 115–126 (1975)

    Article  MATH  Google Scholar 

  46. Schapery, R.A.: Approximate methods of transform inversion for viscoelastic stress analysis. In: Proceedings of the 4th U.S. National Congress of Applied Mechanics, vol. 2, pp. 1075–1085 (1962)

    Google Scholar 

  47. Selezov, I.T.: Numerical solution of the boundary value problems of the wave diffraction by arbitrary revolution surfaces. Numerical Methods. Colloquia Mathematica Societatis János Bolyai, vol. 50, pp. 473–480. North-Holland, Amsterdam (1987)

    Google Scholar 

  48. Selezov, I.T.: Modelirovanie volnovykh i difraktsionnykh protsessov v sploshnykh sredakh (Modeling the Wave and Diffraction Processes in Continuous Media). Naukova Dumka, Kiev (1989)

    Google Scholar 

  49. Selezov, I.T.: Diffraction of waves by radially inhomogeneous inclusions. Phys. Express 1(2), 101–115 (1993)

    MathSciNet  Google Scholar 

  50. Selezov, I.T.: Issledovanie neustanovivshykhsya volnovykh dvizhenii v gidrouprugikh sistemakh obolochka-zhidkost (Investigating the transient wave motions in hydroelastic shell-fluid systems). In: Prikladnye problemy mekhaniki tonkostennykh konstruktsii (Applied Problems in the Mechanics of Thin-Wall Constructions), pp. 286–305. Izdatelstvo Moskovskogo Universiteta, Moscow (2000)

    Google Scholar 

  51. Selezov, I., Fratamico, G.: Pulse waves in arteries with a vessel joint. In: Mela, M., Pallotti, G. (eds.) International Summer School in Biophysics, pp. 89–94. Bellaria Igea Marina, Italy 9–16 Sept. (1996)

    Google Scholar 

  52. Selezov, I.T., Korsunskii, S.V.: Chislennoe obrashchenie preobrazovaniya Laplasa na osnove razlozhenii Fur’e–Besselya (Numerical inversion of the Laplace transform with the use of Fourier–Bessel expansions). Dopovidi AN URSR. Ser. A. 11, 25–28 (1988)

    Google Scholar 

  53. Selezov, I.T., Nikulinskaya, S.N.: Rasprostranenie malykh vozmushchenii v zhidkosti, protekayushchei v uprugoi tsilindricheskoi obolochke (Propagation of small disturbances in the fluid flowing in an elastic cylindrical shell). Izvestiya AN SSSR. Mekhanika 1, 173–175 (1965)

    Google Scholar 

  54. Selezov, I.T., Sorokina, V.V., Tsyganov, N.K., Iakovlev, V.V.: Dynamics of open spherical shell under impulsive excitation. Mechanics of Solids 13(2), 131–135 (1978)

    Google Scholar 

  55. Selezov, I.T., Yakovlev, V.V.: Nekotorye zadachi difraktsii ploskikh voln na tsilindre s peremennoi plotnostyu (Some problems of plane wave diffraction by a cylinder with variable density). Akusticheskii zhurnal 23(5), 805–809 (1977)

    Google Scholar 

  56. Selezov, I.T., Yakovlev, V.V.: Difraktsiya voln na simmetrichnykh neodnorodnostyakh (Wave Diffraction by Symmetric Inhomogeneities). Naukova Dumka, Kiev (1978)

    Google Scholar 

  57. Smirnov, V.I.: A Course of Higher Mathematics, vol. 2. Pergamon Press, Oxford (1964)

    MATH  Google Scholar 

  58. Smotrovs, J.A.: Obrashchenie preobrazovaniya Fur’e metodom asimptoticheskogo ras-shireniya intervala (Fourier transform inversion by the method of asymptotic extension of the interval). In: Voprosy elektrodinamiki i mekhaniki sploshnykh sred (Problems of Electrodynamics and Mechanics of Continuous Media), vol. 4, pp. 128–143. Pēteris Stučka Latvian State University, Riga (1978)

    Google Scholar 

  59. Starkov, V.N.: Konstruktivnye metody vychislitelnoi fiziki v zadachakh interpretatsii (Constructive Methods of Computational Physics in Interpretation Problems). Naukova Dumka, Kiev (2002)

    Google Scholar 

  60. Su, J.-H., Varadan, V.V., Varadan, V.K.: Acoustic wave scattering by a finite elastic cylinder in water. J. Acoust. Soc. Amer. 68(2), 686–691 (1980)

    Article  MATH  Google Scholar 

  61. Talbot, A.: The accurate numerical inversion of Laplace transforms. J. Inst. Math. Appl. 23, 97–120 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  62. Tikhonov, A.N., Arsenin, V.Ya.: Solutions of Ill-Posed Problems. VH Winston & Sons, New York (1977)

    Google Scholar 

  63. Tricomi, F.G.: Differential Equations. Blackie and Son Ltd., London (1961)

    MATH  Google Scholar 

  64. Tsay, T.-K., Zhu, W., Liu, P.L.-F.: A finite element model for wave refraction, diffraction, reflection and dissipation. Appl. Ocean Res. 11(1), 33–38 (1989)

    Article  Google Scholar 

  65. Varley, E., Seymour, B.R.: A method for obtaining exact solutions to partial differential equations with variable coefficients. Stud. Appl. Math. 78, 183–225 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  66. Vershinin, V.D.: K odnomu sposobu opredeleniya obratnogo preobrazovaniya Laplasa (On one way of the determination of the inverse Laplace transform). Izvestiya vuzov. Matematika 10, 24–28 (1978)

    Google Scholar 

  67. Vilge, Ya.I., Zakharov, E.V.: K raschetu nestatsionarnogo akusticheskogo polya v skvazhine metodom chislennogo obrashcheniya preobrazovaniya Laplasa (On calculating the nonstationary acoustic field in a well by the method of the numerical inversion of the Laplace transform). Chislennye metody v geofizike 1, 102–107 (1978)

    Google Scholar 

  68. Vissers, F.P.L.M., Kamp, L.P.J., Sluijter, F.W.: Some generalizations of radial Bremmers series. Wave Motion 13(1), 43–51 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  69. Voronenok, E.Ya.: Chislennyi metod obratnogo preobrazovaniya Laplasa i ego realizatsiya v odnoi zadache gidrouprugosti (Numerical method of the inverse Laplace transform and its realization in one problem of hydroelasticity). In: Problemy stroitelnoi mekhaniki korablya (Problems of Ship Construction Mechanics), pp. 43–51. Sudostroenie, Leningrad (1973)

    Google Scholar 

  70. Waterman, P.C.: New formulation of acoustic scattering. J. Acoust. Soc. Amer. 45(6), 1417–1429 (1969)

    Article  MATH  Google Scholar 

  71. Waterman, P.C.: Symmetry, unitarity, and geometry in electromagnetic scattering. Phys. Rev. D 3, 825–839 (1970)

    Article  Google Scholar 

  72. Weeks, W.T.: Numerical inversion of Laplace transforms using Laguerre functions. J. Assoc. Comput. Math. 13, 419–426 (1966)

    Article  MathSciNet  MATH  Google Scholar 

  73. Wu, R.-S.: The perturbation method in elastic wave scattering. Pure. Appl. Geophys. 131(4), 605–637 (1989)

    Article  Google Scholar 

  74. Yakovlev, Yu.S.: Obshchii metod obrashcheniya integralnykh preobrazovanii Fur’e, Laplasa, Khankelya i Stiltesa funktsii klassa L 2 (A general method for the inversion of the integral Fourier, Laplace, Hankel, and Stieltjes transformations of L 2 class functions). Mekhanika Tverdogo Tela 5, 162–165 (1977)

    Google Scholar 

  75. Zavyalov, Yu.S., Kvasov, B.I., Miroshnichenko, V.D.: Metody splain-funktsii (Methods of Spline Functions). Nauka, Moscow (1980)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Igor T. Selezov .

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Cite this chapter

Selezov, I.T., Kryvonos, Y.G., Gandzha, I.S. (2018). Some Analytical and Numerical Methods in the Theory of Wave Propagation and Diffraction. In: Wave Propagation and Diffraction. Foundations of Engineering Mechanics. Springer, Singapore. https://doi.org/10.1007/978-981-10-4923-1_1

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-4923-1_1

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-4922-4

  • Online ISBN: 978-981-10-4923-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics