Advertisement

Graphene as a Protective Overcoat for Hard Disk Media

Chapter
  • 227 Downloads
Part of the Springer Theses book series (Springer Theses)

Abstract

Based on its remarkable mechanical, tribological and chemical properties, graphene is positioned as a material with great potential for countless applications in the future—especially for high strength, anti-wear and corrosion protection applications at the nanoscale. With this in mind, one of the possible applications for graphene could be as an ultrathin protective overcoat for commercial hard disk media. The advantage of using an atomically-thin overcoat of graphene is that it would lead to a drastic reduction in the head-media spacing and dramatically increase the areal density of hard disk drives. This chapter explores the use of single-layer graphene as a possible hard disk media overcoat.

Keywords

Protective Overcoat Hard Disk Media Single-layer Graphene Corrosion Protection Applications Wear Track Region 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    A.K. Geim, K.S. Novoselov, The rise of graphene. Nat. Mater. 6, 183 (2007)CrossRefGoogle Scholar
  2. 2.
    C.N.R. Rao, A.K. Sood, K.S. Subrahmanyam, A. Govindaraj, Graphene: the new two-dimensional nanomaterial. Angew. Chem. Int. Ed. 48, 7752 (2009)CrossRefGoogle Scholar
  3. 3.
    R.R. Nair, P. Blake, A.N. Grigorenko, K.S. Novoselov, T.J. Booth, T. Stauber, N.M.R. Peres, A.K. Geim, Fine structure constant defines visual transparency of graphene. Science 320, 1308 (2008)CrossRefGoogle Scholar
  4. 4.
    E. Pop, V. Varshney, A.K. Roy, Thermal properties of graphene: fundamentals and applications. MRS Bull. 37, 1273 (2012)CrossRefGoogle Scholar
  5. 5.
    N.O. Weiss, H. Zhou, L. Liao, Y. Liu, S. Jiang, Y. Huang, X. Duan, Graphene: an emerging electronic material. Adv. Mater. 24, 5782 (2012)CrossRefGoogle Scholar
  6. 6.
    C. Lee, X. Wei, J.W. Kysar, J. Hone, Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science 321, 385 (2008)CrossRefGoogle Scholar
  7. 7.
    D. Berman, S.A. Deshmukh, S.K.R.S. Sankaranarayanan, A. Erdemir, A.V. Sumant, Macroscale superlubricity enabled by graphene nanoscroll formation. Science 348, 1118 (2015)CrossRefGoogle Scholar
  8. 8.
    P. Egberts, G.H. Han, X.Z. Liu, A.T.C. Johnson, R.W. Carpick, Frictional behavior of atomically thin sheets: hexagonal-shaped graphene islands grown on copper by chemical vapor deposition. ACS Nano 8, 5010 (2014)CrossRefGoogle Scholar
  9. 9.
    Y.J. Shin, R. Stromberg, R. Nay, H. Huang, A.T.S. Wee, H. Yang, C.S. Bhatia, Frictional characteristics of exfoliated and epitaxial graphene. Carbon 49, 4070 (2011)CrossRefGoogle Scholar
  10. 10.
    O. Leenaerts, B. Partoens, F.M. Peeters, Water on graphene: hydrophobicity and dipole moment using density functional theory. Phys. Rev. B 79, 235440 (2009)CrossRefGoogle Scholar
  11. 11.
    J.S. Bunch, S.S. Verbridge, J.S. Alden, A.M. van der Zande, J.M. Parpia, H.G. Craighead, P.L. McEuen, Impermeable atomic membranes from graphene sheets. Nano Lett. 8, 2458 (2008)CrossRefGoogle Scholar
  12. 12.
    R.K. Singh Raman, P. Chakraborty Banerjee, D.E. Lobo, H. Gullapalli, M. Sumandasa, A. Kumar, L. Choudhary, R. Tkacz, P.M. Ajayan, M. Majumder, Protecting copper from electrochemical degradation by graphene coating. Carbon 50, 4040 (2012)Google Scholar
  13. 13.
    S.H. Vemuri, P.S. Chung, R.L. Smith, N.-E. Lee, L.T. Biegler, M.S. Jhon, Head-disk interface design in magnetic data storage. J. Appl. Phys. 111, 07B721 (2012)CrossRefGoogle Scholar
  14. 14.
    NUS Graphene Centre Joint graphene research to boost data storage [Online] (2013). http://news.nus.edu.sg/highlights/6946-joint-graphene-research-to-boost-data-storage. Accessed 11 Aug 2015
  15. 15.
    B.A. Gurney, E.E. Marinero, S. Pisana, Magnetic devices and magnetic media with graphene overcoat. U.S. Patent Application Publication No. US 2011/0151278 A1, June 23, 2011Google Scholar
  16. 16.
    F. Bonaccorso, A. Lombardo, T. Hasan, Z. Sun, L. Colombo, A.C. Ferrari, Production and processing of graphene and 2d crystals. Mater. Today 15, 564 (2012)CrossRefGoogle Scholar
  17. 17.
    X. Li, Y. Zhu, W. Cai, M. Borysiak, B. Han, D. Chen, R.D. Piner, L. Colombo, R.S. Ruoff, Transfer of large-area graphene films for high-performance transparent conductive electrodes. Nano Lett. 9, 4359 (2009)CrossRefGoogle Scholar
  18. 18.
    A.C. Ferrari, J.C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K.S. Novoselov, S. Roth, A.K. Geim, Raman spectrum of graphene and graphene layers. Phys. Rev. Lett. 97, 187401 (2006)CrossRefGoogle Scholar
  19. 19.
    A.C. Ferrari, Raman spectroscopy of graphene and graphite: Disorder, electron–phonon coupling, doping and nonadiabatic effects. Solid State Commun. 143, 47 (2007)CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2017

Authors and Affiliations

  1. 1.Department of Electrical and Computer EngineeringNational University of SingaporeSingaporeSingapore

Personalised recommendations