Advertisement

Wear-Durable Protective Overcoats for Functional Tape Heads

Chapter
  • 204 Downloads
Part of the Springer Theses book series (Springer Theses)

Abstract

Pole-tip recession (PTR) in magnetic tape heads is one of the major challenges faced in magnetic tape recording, which causes an increase in the magnetic spacing. In addition, tribo-electrochemical reactions can also occur through direct contact between the read/write elements and the tape material, resulting in the formation of metallic deposits. Hence, the application of an ultrathin, wear durable, electrically insulating and chemically inert overcoat on the tape-bearing surface of the head is one possible way to alleviate the issues of PTR and tribo-chemical interactions. In this chapter, the feasibility of ultrathin bi-layer SiNx/C overcoats for functional tape heads is investigated.

References

  1. 1.
    F.E. Spada, D.F. Paul, J.S. Hammond, Application of surface analytical techniques for understanding deposit formation on magnetic tape recording head surfaces. Microsc. Microanal. 18, 874 (2012)CrossRefGoogle Scholar
  2. 2.
    W.W. Scott, B. Bhushan, A.V. Lakshmikumaran, Ultrathin diamond-like carbon coatings used for reduction of pole tip recession in magnetic tape heads. J. Appl. Phys. 87, 6182 (2000)CrossRefGoogle Scholar
  3. 3.
    G.S.A.M. Theunissen, Wear coatings for magnetic thin film magnetic recording heads. Tribol. Int. 31, 519 (1998)CrossRefGoogle Scholar
  4. 4.
    R.G. Biskeborn, W.S. Czarnecki, G.M. Decad, R.E. Fontana, I.E. Iben, J. Liang, C. Lo, L. Randall, P. Rice, A. Ting, T. Topuria, (Invited) linear magnetic tape heads and contact recording. ECS Trans. 50, 19 (2013)CrossRefGoogle Scholar
  5. 5.
    B. Bhushan, B.K. Gupta, R. Sundaram, S. Dey, S. Anders, A. Anders, I.G. Brown, P.D. Reader, Development of hard carbon coatings for thin-film tape heads. IEEE Trans. Magn. 31, 2976 (1995)CrossRefGoogle Scholar
  6. 6.
    B. Shi, J. L. Sullivan, S. O. Saied, A study of thin coating wear in high data density tape heads. J. ASTM Int. 5, JAI101192 (2008)Google Scholar
  7. 7.
    E. Sourty, J.L. Sullivan, M.D. Bijker, Chromium oxide coatings applied to magnetic tape heads for improved wear resistance. Tribol. Int. 36, 389 (2003)CrossRefGoogle Scholar
  8. 8.
    E. Rismani, S.K. Sinha, S. Tripathy, H. Yang, C.S. Bhatia, Effect of pre-treatment of the substrate surface by energetic C+ ion bombardment on structure and nano-tribological characteristics of ultra-thin tetrahedral amorphous carbon (ta-C) protective coatings. J. Phys. D Appl. Phys. 44, 115502 (2011)CrossRefGoogle Scholar
  9. 9.
    E. Rismani, R. Yeo, S.K. Sinha, H. Yang, C.S. Bhatia, Developing an (Al, Ti)N (x) C (y) interlayer to improve the durability of the ta-C coating on magnetic recording heads. Tribol. Lett. 50, 233 (2013)CrossRefGoogle Scholar
  10. 10.
    E. Rismani, S.K. Sinha, H. Yang, C.S. Bhatia, Effect of pretreatment of Si interlayer by energetic C+ ions on the improved nanotribological properties of magnetic head overcoat. J. Appl. Phys. 111, 084902 (2012)CrossRefGoogle Scholar
  11. 11.
    G.W. Brock, D. Conolly, W.S. Czarnecki, Contact Recording on Bidirectional Thin-Film Tape Head Structures, in Advances in Information Storage Systems, vol. 6, B. Bhushan, ed., 1st ed. (World Scientific Publishing, Singapore, 1995), pp. 373–384Google Scholar
  12. 12.
    E. Rismani, R. Yeo, H. Mirabolghasemi, W.M. Kwek, H. Yang, C.S. Bhatia, An ultrathin multilayer TiN/SiN wear resistant coating for advanced magnetic tape drive heads. Thin Solid Films 556, 354 (2014)CrossRefGoogle Scholar
  13. 13.
    S.I. Raider, R. Flitsch, J.A. Aboaf, W.A. Pliskin, Surface oxidation of silicon nitride films. J. Electrochem. Soc. 123, 560 (1976)CrossRefGoogle Scholar
  14. 14.
    B. Shi, J.L. Sullivan, M.A. Wild, S.O. Saied, Study of generation mechanism of three-body particles in linear tape recording. J. Tribol. 127, 155 (2005)CrossRefGoogle Scholar
  15. 15.
    E. Sourty, M. Wild, J.L. Sullivan, Pole tip recession and staining at the head to tape interface of linear tape recording systems. Wear 252, 276 (2002)CrossRefGoogle Scholar
  16. 16.
    Y. Wu, F.E. Talke, Design of a head-tape interface for ultra low flying. IEEE Trans. Magn. 32, 160 (1996)CrossRefGoogle Scholar
  17. 17.
    N. Dwivedi, S. Kumar, J.D. Carey, R.K. Tripathi, H.K. Malik, M.K. Dalai, Influence of silver incorporation on the structural and electrical properties of diamond-like carbon thin films. ACS Appl. Mater. Interfaces 5, 2725 (2013)CrossRefGoogle Scholar
  18. 18.
    N. Dwivedi, S. Kumar, R.K. Tripathi, J.D. Carey, H.K. Malik, M.K. Dalai, Structural and electronic characterization of nanocrystalline diamond like carbon thin films. ACS Appl. Mater. Interfaces 4, 5309 (2012)CrossRefGoogle Scholar
  19. 19.
    H.S. Zhang, K. Komvopoulos, Surface modification of magnetic recording media by filtered cathodic vacuum arc. J. Appl. Phys. 106, 093504 (2009)CrossRefGoogle Scholar
  20. 20.
    P.S. Goohpattader, N. Dwivedi, E. Rismani-Yazdi, N. Satyanarayana, R.J. Yeo, S. Kundu, C.S. Bhatia, Probing the role of C+ ion energy, thickness and graded structure on the functional and microstructural characteristics of ultrathin carbon films (<2 nm). Tribol. Int. 81, 73 (2015)CrossRefGoogle Scholar
  21. 21.
    N. Dwivedi, S. Kumar, J.D. Carey, H.K. Malik, Govind, Photoconductivity and characterization of nitrogen incorporated hydrogenated amorphous carbon thin films. J. Appl. Phys. 112, 113706 (2012)Google Scholar
  22. 22.
    R.J. Yeo, E. Rismani, N. Dwivedi, D.J. Blackwood, H.R. Tan, Z. Zhang, S. Tripathy, C.S. Bhatia, Bi-level surface modification of hard disk media by carbon using filtered cathodic vacuum arc: reduced overcoat thickness without reduced corrosion performance. Diam. Relat. Mater. 44, 100 (2014)CrossRefGoogle Scholar
  23. 23.
    R.J. Yeo, N. Dwivedi, E. Rismani, N. Satyanarayana, S. Kundu, P.S. Goohpattader, H.R. Tan, N. Srinivasan, B. Druz, S. Tripathy, C.S. Bhatia, Enhanced tribological, corrosion, and microstructural properties of an ultrathin (< 2 nm) silicon nitride/carbon bilayer overcoat for high density magnetic storage. ACS Appl. Mater. Interfaces 6, 9376 (2014)CrossRefGoogle Scholar
  24. 24.
    E. Rismani, M.A. Samad, S.K. Sinha, R. Yeo, H. Yang, C.S. Bhatia, Ultrathin Si/C graded layer to improve tribological properties of Co magnetic films. Appl. Phys. Lett. 101, 191601 (2012)CrossRefGoogle Scholar
  25. 25.
    K.H. Ernst, J. Patscheider, R. Hauert, M. Tobler, XPS study of the a-C:H/Al2O3 interface. Surf. Interface Anal. 21, 32 (1994)CrossRefGoogle Scholar
  26. 26.
    T. Peng, Z. Kou, H. Wu, S. Mu, Graphene from amorphous titanium carbide by chlorination under 200[deg]C and atmospheric pressures. Sci. Rep. 4, 5494 (2014)CrossRefGoogle Scholar
  27. 27.
    S. Zhang, X.L. Bui, J. Jiang, X. Li, Microstructure and tribological properties of magnetron sputtered nc-TiC/a-C nanocomposite. Surf. Coat. Technol. 198, 206 (2005)CrossRefGoogle Scholar
  28. 28.
    N. Dwivedi, E. Rismani-Yazdi, R.J. Yeo, P.S. Goohpattader, N. Satyanarayana, N. Srinivasan, B. Druz, S. Tripathy, C.S. Bhatia, Probing the Role of an atomically thin SiNx interlayer on the structure of ultrathin carbon films. Sci. Rep. 4, 5021 (2014)CrossRefGoogle Scholar
  29. 29.
    P. Bunnak, Y. Gong, S. Limsuwan, A. Pokaipisit, P. Limsuwan, Chemical bonding in composite SiNx/diamond-like carbon films prepared by filter cathodic arc deposition of graphite incorporated with radio frequency sputtering of silicon nitride. Jpn. J. Appl. Phys. 52, 095501 (2013)CrossRefGoogle Scholar
  30. 30.
    M. Matsuoka, S. Isotani, W. Sucasaire, L.S. Zambom, K. Ogata, Chemical bonding and composition of silicon nitride films prepared by inductively coupled plasma chemical vapor deposition. Surf. Coat. Technol. 204, 2923 (2010)CrossRefGoogle Scholar
  31. 31.
    Y. Fu, H. Du, S. Zhang, S.E. Ong, Effects of silicon nitride interlayer on phase transformation and adhesion of TiNi films. Thin Solid Films 476, 352 (2005)CrossRefGoogle Scholar
  32. 32.
    N. Hellgren, J. Guo, Y. Luo, C. Såthe, A. Agui, S. Kashtanov, J. Nordgren, H. Ågren, J.-E. Sundgren, Electronic structure of carbon nitride thin films studied by X-ray spectroscopy techniques. Thin Solid Films 471, 19 (2005)CrossRefGoogle Scholar
  33. 33.
    R. McCann, S.S. Roy, P. Papakonstantinou, M.F. Bain, H.S. Gamble, J.A. McLaughlin, Chemical bonding modifications of tetrahedral amorphous carbon and nitrogenated tetrahedral amorphous carbon films induced by rapid thermal annealing. Thin Solid Films 482, 34 (2005)CrossRefGoogle Scholar
  34. 34.
    R. Bertoncello, A. Casagrande, M. Casarin, A. Glisenti, E. Lanzoni, L. Mirenghi, E. Tondello, TiN, TiC and Ti(C, N) film characterization and its relationship to tribological behaviour. Surf. Interface Anal. 18, 525 (1992)CrossRefGoogle Scholar
  35. 35.
    H. Yan, W.R. Cannon, D.J. Shanefield, Evolution of carbon during burnout and sintering of tape-cast aluminum nitride. J. Am. Ceram. Soc. 76, 166 (1993)CrossRefGoogle Scholar
  36. 36.
    X.B. Yan, T. Xu, G. Chen, S.R. Yang, H.W. Liu, Q.J. Xue, Preparation and characterization of electrochemically deposited carbon nitride films on silicon substrate. J. Phys. D Appl. Phys. 37, 907 (2004)CrossRefGoogle Scholar
  37. 37.
    L. Ramqvist, K. Hamrin, G. Johansson, A. Fahlman, C. Nordling, Charge transfer in transition metal carbides and related compounds studied by ESCA. J. Phys. Chem. Solids 30, 1835 (1969)CrossRefGoogle Scholar
  38. 38.
    A. Schüler, P. Oelhafen, In situ core-level and valence-band photoelectron spectroscopy of reactively sputtered titanium aluminum nitride films. Phys. Rev. B 63, 115413 (2001)Google Scholar
  39. 39.
    I. Strydom, S. Hofmann, The contribution of characteristic energy losses in the core-level X-ray photoelectron spectroscopy peaks of TiN and (Ti, Al)N studied by electron energy loss spectroscopy and X-ray photoelectron spectroscopy. J. Electron Spectrosc. Relat. Phenom. 56, 85 (1991)Google Scholar
  40. 40.
    Y. Liu, T.P. Chen, P. Zhao, S. Zhang, S. Fung, Y.Q. Fu, Memory effect of Al-rich AlN films synthesized with rf magnetron sputtering. Appl. Phys. Lett. 87, 033112 (2005)CrossRefGoogle Scholar
  41. 41.
    P.J. Matsuo, T.E.F.M. Standaert, S.D. Allen, G.S. Oehrlein, T.J. Dalton, Characterization of Al, Cu, and TiN surface cleaning following a low-K dielectric etch. J. Vac. Sci. Technol., B 17, 1435 (1999)CrossRefGoogle Scholar
  42. 42.
    Data Interchange on 12.7 nm 384-Track Magnetic Tape Cartridges—Ultrium-1 Format, ECMA Standard 319, 2001Google Scholar
  43. 43.
    P. Poorman, The effect of tape overwrap angle and head radius on head/tape spacing and contact pressure in linear tape recording. Tribol. Int. 31, 449 (1998)CrossRefGoogle Scholar
  44. 44.
    S. Tan, F.E. Talke, Numerical and experimental investigations of the head/tape interface in a digital linear tape drive. J. Tribol. 123, 343 (2000)CrossRefGoogle Scholar
  45. 45.
    R.L. Wallace, The reproduction of magnetically recorded signals. Bell Syst. Technol. J. 30, 1145 (1951)CrossRefGoogle Scholar
  46. 46.
    E. Rismani, S.K. Sinha, H. Yang, S. Tripathy, C.S. Bhatia, Development of a ta-C wear resistant coating with composite interlayer for recording heads of magnetic tape drives. Tribol. Lett. 46, 221 (2012)CrossRefGoogle Scholar
  47. 47.
    Ferrari, J. Robertson, Resonant Raman spectroscopy of disordered, amorphous, and diamondlike carbon. Phys. Rev. B: Condens. Matter 64, 075414 (2001)Google Scholar
  48. 48.
    N. Dwivedi, R.J. Yeo, P.S. Goohpattader, N. Satyanarayana, S. Tripathy, C.S. Bhatia, Enhanced characteristics of pulsed DC sputtered ultrathin (<2 nm) amorphous carbon overcoats on hard disk magnetic media. Diam. Relat. Mater. 51, 14 (2015)CrossRefGoogle Scholar
  49. 49.
    N. Wang, K. Komvopoulos, The multilayered structure of ultrathin amorphous carbon films synthesized by filtered cathodic vacuum arc deposition. J. Mater. Res. 28, 2124 (2013)CrossRefGoogle Scholar
  50. 50.
    R. Konicek, D.S. Grierson, A.V. Sumant, T.A. Friedmann, J.P. Sullivan, P.U.P.A. Gilbert, W.G. Sawyer, R.W. Carpick, Influence of surface passivation on the friction and wear behavior of ultrananocrystalline diamond and tetrahedral amorphous carbon thin films. Phys. Rev. B 85, 155448 (2012)CrossRefGoogle Scholar
  51. 51.
    A. Voevodin, A.W. Phelps, J.S. Zabinski, M.S. Donley, Friction induced phase transformation of pulsed laser deposited diamond-like carbon. Diam. Relat. Mater. 5, 1264 (1998)CrossRefGoogle Scholar
  52. 52.
    N. Dwivedi, R.J. Yeo, Z. Zhang, C. Dhand, S. Tripathy, C.S. Bhatia, Interface engineering and controlling the friction and wear of ultrathin carbon films: high sp3 versus high sp2 carbons. Adv. Funct. Mater. 26, 1526 (2016)CrossRefGoogle Scholar
  53. 53.
    N.W. Khun, E. Liu, Influence of carbon sputtering power on structure, corrosion resistance, adhesion strength and wear resistance of platinum/ruthenium/nitrogen doped diamond-like carbon thin films. Surf. Coat. Technol. 205, 853 (2010)CrossRefGoogle Scholar
  54. 54.
    C. Casiraghi, A.C. Ferrari, R. Ohr, D. Chu, J. Robertson, Surface properties of ultra-thin tetrahedral amorphous carbon films for magnetic storage technology. Diam. Relat. Mater. 13, 1416 (2004)CrossRefGoogle Scholar
  55. 55.
    P. Lemoine, J.F. Zhao, J.P. Quinn, A.A. Ogwu, J.A. McLaughlin, P. Maguire, F. McGinnity, X. Shi, Naniondentation and scratch resistance testing on magnetic tape heads coated with ultra-thin amorphous carbon layers. Wear 244, 79 (2000)CrossRefGoogle Scholar
  56. 56.
    R.J. Yeo, N. Dwivedi, L. Zhang, Z. Zhang, C.Y.H. Lim, S. Tripathy, C.S. Bhatia, Durable ultrathin silicon nitride/carbon bilayer overcoats for magnetic heads: the role of enhanced interfacial bonding. J. Appl. Phys. 117, 045310 (2015)CrossRefGoogle Scholar
  57. 57.
    R.J. Yeo, N. Dwivedi, S. Tripathy, C.S. Bhatia, Excellent wear life of silicon nitride/tetrahedral amorphous carbon bilayer overcoat on functional tape heads. Appl. Phys. Lett. 106, 091604 (2015)CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2017

Authors and Affiliations

  1. 1.Department of Electrical and Computer EngineeringNational University of SingaporeSingaporeSingapore

Personalised recommendations