Overcoat Fabrication and Characterization

Part of the Springer Theses book series (Springer Theses)


Amorphous carbon films can be deposited by a range of deposition techniques. Presently, the magnetic data storage industry uses the following for the deposition of ultrathin carbon overcoats: (1) magnetron sputtering, (2) filtered cathodic vacuum arc (FCVA) and (3) plasma-enhanced chemical vapor deposition (PECVD)-based techniques. These three carbon overcoat fabrication techniques are discussed in this chapter.


  1. 1.
    J. Robertson, Ultrathin carbon coatings for magnetic storage technology. Thin Solid Films 383, 81 (2001)CrossRefGoogle Scholar
  2. 2.
    J.W. Bradley, H. Bäcker, P.J. Kelly, R.D. Arnell, Time-resolved Langmuir probe measurements at the substrate position in a pulsed mid-frequency DC magnetron plasma. Surf. Coat. Technol. 135, 221 (2001)CrossRefGoogle Scholar
  3. 3.
    N. Dwivedi, R.J. Yeo, P.S. Goohpattader, N. Satyanarayana, S. Tripathy, C.S. Bhatia, Enhanced characteristics of pulsed DC sputtered ultrathin (<2nm) amorphous carbon overcoats on hard disk magnetic media. Diam. Relat. Mater. 51, 14 (2015)CrossRefGoogle Scholar
  4. 4.
    P.J. Kelly, C.F. Beevers, P.S. Henderson, R.D. Arnell, J.W. Bradley, H. Bäcker, A comparison of the properties of titanium-based films produced by pulsed and continuous DC magnetron sputtering. Surf. Coat. Technol. 174–175, 795 (2003)CrossRefGoogle Scholar
  5. 5.
    A. Tomala, A. Pauschitz, M. Roy, Nanotribology of pulsed direct current magnetron sputtered diamond like carbon films. Surf. Sci. 616, 60 (2013)CrossRefGoogle Scholar
  6. 6.
    A. Anders, Cathodic arcs: from fractal spots to energetic condensation, in Springer Series on Atomic, Optical, and Plasma Physics, vol. 50 (Springer Science+Business Media, New York, NY, USA, 2008)Google Scholar
  7. 7.
    Y. Lifshitz, Diamond-like carbon—present status. Diam. Relat. Mater. 8, 1659 (1999)CrossRefGoogle Scholar
  8. 8.
    M. Chhowalla, J. Robertson, C.W. Chen, S.R.P. Silva, C.A. Davis, G.A.J. Amaratunga, W.I. Milne, Influence of ion energy and substrate temperature on the optical and electronic properties of tetrahedral amorphous carbon (ta-C) films. J. Appl. Phys. 81, 139 (1997)CrossRefGoogle Scholar
  9. 9.
    H. Inaba, K. Furusawa, S. Sasaki, Filtered cathodic vacuum arc process conditions and properties of thin tetrahedral amorphous carbon films. Jpn. J. Appl. Phys. 43, 2681 (2004)CrossRefGoogle Scholar
  10. 10.
    H. Inaba, K. Furusawa, S. Hirano, S. Sasaki, S. Todoroki, M. Yamasaka, M. Endou, Tetrahedral amorphous carbon films by filtered cathodic vacuum-arc deposition for air-bearing-surface overcoat. Jpn. J. Appl. Phys. 42, 2824 (2003)CrossRefGoogle Scholar
  11. 11.
    S. Schmidt, Z. Czigány, G. Greczynski, J. Jensen, L. Hultman, Ion mass spectrometry investigations of the discharge during reactive high power pulsed and direct current magnetron sputtering of carbon in Ar and Ar/N2. J. Appl. Phys. 112, 013305 (2012)CrossRefGoogle Scholar
  12. 12.
    M. Weiler, S. Sattel, K. Jung, H. Ehrhardt, V.S. Veerasamy, J. Robertson, Highly tetrahedral, diamond-like amorphous hydrogenated carbon prepared from a plasma beam source. Appl. Phys. Lett. 64, 2797 (1994)CrossRefGoogle Scholar
  13. 13.
    M. Weiler, K. Lang, E. Li, J. Robertson, Deposition of tetrahedral hydrogenated amorphous carbon using a novel electron cyclotron wave resonance reactor. Appl. Phys. Lett. 72, 1314 (1998)CrossRefGoogle Scholar
  14. 14.
    D.J. O’Connor, B.A. Sexton, R.S.C. Smart, Surface Analysis Methods in Materials Science, vol. 23, 2nd edn. (Springer, New York, NY, USA, 2003)Google Scholar
  15. 15.
    M. Sardela, Practical Materials Characterization, 1st edn. (Springer, New York, NY, USA, 2014)Google Scholar
  16. 16.
    M.A. Samad, E. Rismani, H. Yang, S.K. Sinha, C.S. Bhatia, Overcoat free magnetic media for lower magnetic spacing and improved tribological properties for higher areal densities. Tribol. Lett. 43, 247 (2011)CrossRefGoogle Scholar
  17. 17.
    E. Rismani, S.K. Sinha, S. Tripathy, H. Yang, C.S. Bhatia, Effect of pre-treatment of the substrate surface by energetic C+ ion bombardment on structure and nano-tribological characteristics of ultra-thin tetrahedral amorphous carbon (ta-C) protective coatings. J. Phys. D Appl. Phys. 44, 115502 (2011)CrossRefGoogle Scholar
  18. 18.
    B. Balakrisnan, B. Tomcik, D.J. Blackwood, Influence of carbon sputtering conditions on corrosion protection of magnetic layer by an electrochemical technique. J. Electrochem. Soc. 149, B84 (2002)CrossRefGoogle Scholar
  19. 19.
    R.J. Yeo, E. Rismani, N. Dwivedi, D.J. Blackwood, H.R. Tan, Z. Zhang, S. Tripathy, C.S. Bhatia, Bi-level surface modification of hard disk media by carbon using filtered cathodic vacuum arc: reduced overcoat thickness without reduced corrosion performance. Diam. Relat. Mater. 44, 100 (2014)CrossRefGoogle Scholar
  20. 20.
    D.G. Enos, L.L. Scribner, The Potentiodynamic Polarization Scan. Solartron Analytical, Hampshire, UK, Technical Report 33, Jan 1997Google Scholar
  21. 21.
    T.P. Hoar, On the relation between corrosion rate and polarization resistance. Corros. Sci. 7, 455 (1967)CrossRefGoogle Scholar
  22. 22.
    M. Hakovirta, J. Salo, R. Lappalainen, A. Anttila, Correlation of carbon ion energy with sp2/sp3 ratio in amorphous diamond films produced with a mass-separated ion beam. Phys. Lett. A 205, 287 (1995)CrossRefGoogle Scholar
  23. 23.
    W.C. Oliver, G.M. Pharr, Measurement of hardness and elastic modulus by instrumented indentation: advances in understanding and refinements to methodology. J. Mater. Res. 19, 3 (2004)CrossRefGoogle Scholar
  24. 24.
    R.J. Yeo, N. Dwivedi, L. Zhang, Z. Zhang, C.Y.H. Lim, S. Tripathy, C.S. Bhatia, Durable ultrathin silicon nitride/carbon bilayer overcoats for magnetic heads: the role of enhanced interfacial bonding. J. Appl. Phys. 117, 045310 (2015)CrossRefGoogle Scholar
  25. 25.
    B. Raeymaekers, F.E. Talke, Measurement and sources of lateral tape motion: a review. J. Tribol. 131, 011903 (2008)CrossRefGoogle Scholar
  26. 26.
    A.C. Ferrari, J. Robertson, Interpretation of Raman spectra of disordered and amorphous carbon. Phys. Rev. B Condens. Matter 61, 14095 (2000)CrossRefGoogle Scholar
  27. 27.
    A.C. Ferrari, J. Robertson, Raman spectroscopy of amorphous, nanostructured, diamond-like carbon, and nanodiamond. Philos. Trans. R. Soc. Lond. Ser. A 362, 2477 (2004)CrossRefGoogle Scholar
  28. 28.
    J. Robertson, Diamond-like amorphous carbon. Mater. Sci. Eng. R-Rep. 37, 129 (2002)CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2017

Authors and Affiliations

  1. 1.Department of Electrical and Computer EngineeringNational University of SingaporeSingaporeSingapore

Personalised recommendations