Skip to main content

Part of the book series: Springer Theses ((Springer Theses))

  • 326 Accesses

Abstract

Amorphous carbon films can be deposited by a range of deposition techniques. Presently, the magnetic data storage industry uses the following for the deposition of ultrathin carbon overcoats: (1) magnetron sputtering, (2) filtered cathodic vacuum arc (FCVA) and (3) plasma-enhanced chemical vapor deposition (PECVD)-based techniques. These three carbon overcoat fabrication techniques are discussed in this chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. J. Robertson, Ultrathin carbon coatings for magnetic storage technology. Thin Solid Films 383, 81 (2001)

    Article  Google Scholar 

  2. J.W. Bradley, H. Bäcker, P.J. Kelly, R.D. Arnell, Time-resolved Langmuir probe measurements at the substrate position in a pulsed mid-frequency DC magnetron plasma. Surf. Coat. Technol. 135, 221 (2001)

    Article  Google Scholar 

  3. N. Dwivedi, R.J. Yeo, P.S. Goohpattader, N. Satyanarayana, S. Tripathy, C.S. Bhatia, Enhanced characteristics of pulsed DC sputtered ultrathin (<2nm) amorphous carbon overcoats on hard disk magnetic media. Diam. Relat. Mater. 51, 14 (2015)

    Article  Google Scholar 

  4. P.J. Kelly, C.F. Beevers, P.S. Henderson, R.D. Arnell, J.W. Bradley, H. Bäcker, A comparison of the properties of titanium-based films produced by pulsed and continuous DC magnetron sputtering. Surf. Coat. Technol. 174–175, 795 (2003)

    Article  Google Scholar 

  5. A. Tomala, A. Pauschitz, M. Roy, Nanotribology of pulsed direct current magnetron sputtered diamond like carbon films. Surf. Sci. 616, 60 (2013)

    Article  Google Scholar 

  6. A. Anders, Cathodic arcs: from fractal spots to energetic condensation, in Springer Series on Atomic, Optical, and Plasma Physics, vol. 50 (Springer Science+Business Media, New York, NY, USA, 2008)

    Google Scholar 

  7. Y. Lifshitz, Diamond-like carbon—present status. Diam. Relat. Mater. 8, 1659 (1999)

    Article  Google Scholar 

  8. M. Chhowalla, J. Robertson, C.W. Chen, S.R.P. Silva, C.A. Davis, G.A.J. Amaratunga, W.I. Milne, Influence of ion energy and substrate temperature on the optical and electronic properties of tetrahedral amorphous carbon (ta-C) films. J. Appl. Phys. 81, 139 (1997)

    Article  Google Scholar 

  9. H. Inaba, K. Furusawa, S. Sasaki, Filtered cathodic vacuum arc process conditions and properties of thin tetrahedral amorphous carbon films. Jpn. J. Appl. Phys. 43, 2681 (2004)

    Article  Google Scholar 

  10. H. Inaba, K. Furusawa, S. Hirano, S. Sasaki, S. Todoroki, M. Yamasaka, M. Endou, Tetrahedral amorphous carbon films by filtered cathodic vacuum-arc deposition for air-bearing-surface overcoat. Jpn. J. Appl. Phys. 42, 2824 (2003)

    Article  Google Scholar 

  11. S. Schmidt, Z. Czigány, G. Greczynski, J. Jensen, L. Hultman, Ion mass spectrometry investigations of the discharge during reactive high power pulsed and direct current magnetron sputtering of carbon in Ar and Ar/N2. J. Appl. Phys. 112, 013305 (2012)

    Article  Google Scholar 

  12. M. Weiler, S. Sattel, K. Jung, H. Ehrhardt, V.S. Veerasamy, J. Robertson, Highly tetrahedral, diamond-like amorphous hydrogenated carbon prepared from a plasma beam source. Appl. Phys. Lett. 64, 2797 (1994)

    Article  Google Scholar 

  13. M. Weiler, K. Lang, E. Li, J. Robertson, Deposition of tetrahedral hydrogenated amorphous carbon using a novel electron cyclotron wave resonance reactor. Appl. Phys. Lett. 72, 1314 (1998)

    Article  Google Scholar 

  14. D.J. O’Connor, B.A. Sexton, R.S.C. Smart, Surface Analysis Methods in Materials Science, vol. 23, 2nd edn. (Springer, New York, NY, USA, 2003)

    Google Scholar 

  15. M. Sardela, Practical Materials Characterization, 1st edn. (Springer, New York, NY, USA, 2014)

    Google Scholar 

  16. M.A. Samad, E. Rismani, H. Yang, S.K. Sinha, C.S. Bhatia, Overcoat free magnetic media for lower magnetic spacing and improved tribological properties for higher areal densities. Tribol. Lett. 43, 247 (2011)

    Article  Google Scholar 

  17. E. Rismani, S.K. Sinha, S. Tripathy, H. Yang, C.S. Bhatia, Effect of pre-treatment of the substrate surface by energetic C+ ion bombardment on structure and nano-tribological characteristics of ultra-thin tetrahedral amorphous carbon (ta-C) protective coatings. J. Phys. D Appl. Phys. 44, 115502 (2011)

    Article  Google Scholar 

  18. B. Balakrisnan, B. Tomcik, D.J. Blackwood, Influence of carbon sputtering conditions on corrosion protection of magnetic layer by an electrochemical technique. J. Electrochem. Soc. 149, B84 (2002)

    Article  Google Scholar 

  19. R.J. Yeo, E. Rismani, N. Dwivedi, D.J. Blackwood, H.R. Tan, Z. Zhang, S. Tripathy, C.S. Bhatia, Bi-level surface modification of hard disk media by carbon using filtered cathodic vacuum arc: reduced overcoat thickness without reduced corrosion performance. Diam. Relat. Mater. 44, 100 (2014)

    Article  Google Scholar 

  20. D.G. Enos, L.L. Scribner, The Potentiodynamic Polarization Scan. Solartron Analytical, Hampshire, UK, Technical Report 33, Jan 1997

    Google Scholar 

  21. T.P. Hoar, On the relation between corrosion rate and polarization resistance. Corros. Sci. 7, 455 (1967)

    Article  Google Scholar 

  22. M. Hakovirta, J. Salo, R. Lappalainen, A. Anttila, Correlation of carbon ion energy with sp2/sp3 ratio in amorphous diamond films produced with a mass-separated ion beam. Phys. Lett. A 205, 287 (1995)

    Article  Google Scholar 

  23. W.C. Oliver, G.M. Pharr, Measurement of hardness and elastic modulus by instrumented indentation: advances in understanding and refinements to methodology. J. Mater. Res. 19, 3 (2004)

    Article  Google Scholar 

  24. R.J. Yeo, N. Dwivedi, L. Zhang, Z. Zhang, C.Y.H. Lim, S. Tripathy, C.S. Bhatia, Durable ultrathin silicon nitride/carbon bilayer overcoats for magnetic heads: the role of enhanced interfacial bonding. J. Appl. Phys. 117, 045310 (2015)

    Article  Google Scholar 

  25. B. Raeymaekers, F.E. Talke, Measurement and sources of lateral tape motion: a review. J. Tribol. 131, 011903 (2008)

    Article  Google Scholar 

  26. A.C. Ferrari, J. Robertson, Interpretation of Raman spectra of disordered and amorphous carbon. Phys. Rev. B Condens. Matter 61, 14095 (2000)

    Article  Google Scholar 

  27. A.C. Ferrari, J. Robertson, Raman spectroscopy of amorphous, nanostructured, diamond-like carbon, and nanodiamond. Philos. Trans. R. Soc. Lond. Ser. A 362, 2477 (2004)

    Article  Google Scholar 

  28. J. Robertson, Diamond-like amorphous carbon. Mater. Sci. Eng. R-Rep. 37, 129 (2002)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Reuben Jueyuan Yeo .

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd.

About this chapter

Cite this chapter

Yeo, R.J. (2017). Overcoat Fabrication and Characterization. In: Ultrathin Carbon-Based Overcoats for Extremely High Density Magnetic Recording. Springer Theses. Springer, Singapore. https://doi.org/10.1007/978-981-10-4882-1_3

Download citation

Publish with us

Policies and ethics