Advertisement

Introduction

Chapter
  • 281 Downloads
Part of the Springer Theses book series (Springer Theses)

Abstract

Reduction of the magnetic spacing in magnetic hard disk drives (HDDs) and tape drives is crucial to maintain proper recording and readback at extremely high areal densities. In HDDs, the media overcoat contributes to a significant part of the magnetic spacing, whereas in tape drives, abrasive wear of the head sensors leads to higher spacing. This necessitates the use of ultrathin overcoats which can maintain corrosion and tribological protection at the head-media interface, and ideally possess good thermal stability for heat-assisted magnetic recording (HAMR). In this thesis, such challenges are addressed through the development of novel carbon-based overcoats with thicknesses of ≤ 2 nm for HDD media and ≤ 20 nm for tape drive heads, using novel processes. The suitability of graphene as an overcoat for HDD media is also explored. The improved functional properties of these overcoats are subsequently explained in terms of their microstructure and interfacial bonding.

Keywords

Heat-assisted Magnetic Recording (HAMR) Hard Disk Drives (HDDs) Readback Magnetic Space Overcoat 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    E.D. Daniel, C.D. Mee, M.H. Clark, Magnetic Recording: The First 100 Years, 1st edn. (Wiley-IEEE Press, New York, USA, 1998)CrossRefGoogle Scholar
  2. 2.
    IBM Archives. IBM 350 Disk Storage Unit [Online]. https://www-03.ibm.com/ibm/history/exhibits/storage/storage_350.html. Accessed 11 Aug 2015
  3. 3.
    EMC Digital Universe Infobrief. The Digital Universe of Opportunities. International Data Corporation, Apr 2014Google Scholar
  4. 4.
    G. Binasch, P. Grünberg, F. Saurenbach, W. Zinn, Enhanced magnetoresistance in layered magnetic structures with antiferromagnetic interlayer exchange. Phys. Rev. B 39, 4828 (1989)CrossRefGoogle Scholar
  5. 5.
    M.N. Baibich, J.M. Broto, A. Fert, F.N. Van Dau, F. Petroff, P. Etienne, G. Creuzet, A. Friederich, J. Chazelas, Giant magnetoresistance of (001)Fe/(001)Cr magnetic superlattices. Phys. Rev. Lett. 61, 2472 (1988)CrossRefGoogle Scholar
  6. 6.
    S. Yuasa, T. Nagahama, A. Fukushima, Y. Suzuki, K. Ando, Giant room-temperature magnetoresistance in single-crystal Fe/MgO/Fe magnetic tunnel junctions. Nat. Mater. 3, 868 (2004)CrossRefGoogle Scholar
  7. 7.
    S.S.P. Parkin, C. Kaiser, A. Panchula, P.M. Rice, B. Hughes, M. Samant, S.-H. Yang, Giant tunnelling magnetoresistance at room temperature with MgO (100) tunnel barriers. Nat. Mater. 3, 862 (2004)CrossRefGoogle Scholar
  8. 8.
    C. Reig, C.-B. Maria-Dolores, D.R. Munoz, Magnetic field sensors based on giant magnetoresistance (GMR) technology: applications in electrical current sensing. Sensors 9, 7919 (2009)CrossRefGoogle Scholar
  9. 9.
    W.J. Gallagher, S.S.P. Parkin, Development of the magnetic tunnel junction MRAM at IBM: from first junctions to a 16-Mb MRAM demonstrator chip. IBM J. Res. Dev. 50, 5 (2006)CrossRefGoogle Scholar
  10. 10.
    Q.H. Zeng, D.B. Bogy, Stiffness and damping evaluation of air bearing sliders and new designs with high damping. J. Tribol. 121, 341 (1999)CrossRefGoogle Scholar
  11. 11.
    H. Kohira, V. Prabhakaran, F.E. Talke, Effect of air bearing design on wear of diamond-like carbon coated proximity recording sliders. Tribol. Int. 33, 315 (2000)CrossRefGoogle Scholar
  12. 12.
    B. Marchon, T. Pitchford, Y.-T. Hsia, S. Gangopadhyay, The head-disk interface roadmap to an areal density of 4 Tbit/in2. Adv. Tribol. 2013, 521086 (2013)Google Scholar
  13. 13.
    G.-G. Wang, X.-P. Kuang, H.-Y. Zhang, C. Zhu, J.-C. Han, H.-B. Zuo, H.-T. Ma, Silicon nitride gradient film as the underlayer of ultra-thin tetrahedral amorphous carbon overcoat for magnetic recording slider. Mater. Chem. Phys. 131, 127 (2011)CrossRefGoogle Scholar
  14. 14.
    N. Yasui, H. Inaba, N. Ohtake, Influence of substrates on initial growth of diamond-like carbon films. Appl. Phys. Express 1, 035002 (2008)CrossRefGoogle Scholar
  15. 15.
    C.S. Bhatia, S. Anders, K. Bobb, R. Hsiao, I.G. Brown, D.B. Bogy, Ultra-Thin Overcoats for the Head/Disk Interface Tribology. J. Tribol. Trans. ASME 120, 795 (1998)CrossRefGoogle Scholar
  16. 16.
    H. Han, F. Ryan, M. McClure, Ultra-thin tetrahedral amorphous carbon film as slider overcoat for high areal density magnetic recording. Surf. Coat. Technol. 120–121, 579 (1999)CrossRefGoogle Scholar
  17. 17.
    H. Inaba, K. Furusawa, S. Hirano, S. Sasaki, S. Todoroki, M. Yamasaka, M. Endou, Tetrahedral amorphous carbon films by filtered cathodic vacuum-arc deposition for air-bearing-surface overcoat. Jpn. J. Appl. Phys. 42, 2824 (2003)CrossRefGoogle Scholar
  18. 18.
    C. Casiraghi, A.C. Ferrari, R. Ohr, D. Chu, J. Robertson, Surface properties of ultra-thin tetrahedral amorphous carbon films for magnetic storage technology. Diam. Relat. Mater. 13, 1416 (2004)CrossRefGoogle Scholar
  19. 19.
    C.S. Bhatia, C.-Y. Chen, W. Fong, D.B. Bogy, Tribochemistry of ZDOL decomposition on carbon overcoats in ultra-high vacuum (UHV), in MRS Online Proceedings Library, vol. 594 (1999)Google Scholar
  20. 20.
    C.S. Bhatia, W. Fong, C. Chao-Yuan, W. Jianjun, D.B. Bogy, S. Anders, T. Stammler, J. Stohr, Tribo-chemistry at the head/disk interface. IEEE Trans. Magn. 35, 910 (1999)CrossRefGoogle Scholar
  21. 21.
    P.H. Kasai, W.T. Tang, P. Wheeler, Degradation of perfluoropolyethers catalyzed by aluminum oxide. Appl. Surf. Sci. 51, 201 (1991)CrossRefGoogle Scholar
  22. 22.
    J. Robertson, Ultrathin carbon coatings for magnetic storage technology. Thin Solid Films 383, 81 (2001)CrossRefGoogle Scholar
  23. 23.
    B.D. Strom, D.B. Bogy, R.G. Walmsley, J. Brandt, C.S. Bhatia, Gaseous wear products from perfluoropolyether lubricant films. Wear 168, 31 (1993)CrossRefGoogle Scholar
  24. 24.
    T.C. Arnoldussen, E.-M. Rossi, Materials for magnetic recording. Annu. Rev. Mater. Sci. 15, 379 (1985)CrossRefGoogle Scholar
  25. 25.
    T. Toyaguchi, T. Yamamoto, Material and tribological properties of a-C: H film by plasma CVD for a disk overcoat. IEEE Trans. Magn. 34, 1741 (1998)CrossRefGoogle Scholar
  26. 26.
    T. Yamamoto, H. Hyodo, Amorphous carbon overcoat for thin-film disk. Tribol. Int. 36, 483 (2003)CrossRefGoogle Scholar
  27. 27.
    S.S. Perry, C.M. Mate, R.L. White, G.A. Somorjai, Bonding and tribological properties of perfluorinated lubricants and hydrogenated amorphous carbon films. IEEE Trans. Magn. 32, 115 (1996)CrossRefGoogle Scholar
  28. 28.
    A.C. Ferrari, Diamond-like carbon for magnetic storage disks. Surf. Coat. Technol. 180–181, 190 (2004)CrossRefGoogle Scholar
  29. 29.
    D.J. Li, M.U. Guruz, C.S. Bhatia, Y.-W. Chung, Ultrathin CNx overcoats for 1 Tb/in2 hard disk drive systems. Appl. Phys. Lett. 81, 1113 (2002)CrossRefGoogle Scholar
  30. 30.
    J. Robertson, Requirements of ultrathin carbon coatings for magnetic storage technology. Tribol. Int. 36, 405 (2003)CrossRefGoogle Scholar
  31. 31.
    A.G. Merzlikine, L. Li, P. Jones, Y.-T. Hsia, Lubricant layer formation during the dip-coating process: influence of adsorption and viscous flow mechanisms. Tribol. Lett. 18, 279 (2005)CrossRefGoogle Scholar
  32. 32.
    G.E. Totten, Handbook of Lubrication and Tribology: Volume 1 Application and Maintenance, vol. 1, 2nd edn. (CRC Press, Taylor & Francis Group, Boca Raton, FL, USA, 2006)Google Scholar
  33. 33.
    P. Kasai, Z-dol and carbon overcoat: the bonding mechanism. Tribol. Lett. 26, 93 (2007)CrossRefGoogle Scholar
  34. 34.
    R.P. Ambekar, D.B. Bogy, C.S. Bhatia, Lubricant depletion and disk-to-head lubricant transfer at the head-disk interface in hard disk drives. J. Tribol. 131, 031901 (2009)CrossRefGoogle Scholar
  35. 35.
    X.-C. Guo, B. Knigge, B. Marchon, R.J. Waltman, M. Carter, J. Burns, Multidentate functionalized lubricant for ultralow head/disk spacing in a disk drive. J. Appl. Phys. 100, 044306 (2006)CrossRefGoogle Scholar
  36. 36.
    P.H. Kasai, T. Shimizu, Bonding of hard disk lubricants with OH-bearing end groups. Tribol. Lett. 46, 43 (2012)CrossRefGoogle Scholar
  37. 37.
    Q. Zhao, H.J. Kang, F.E. Talke, D.J. Perettie, T.A. Morgan, Tribological study of phosphazene-type additives in perfluoropolyether lubricant for hard disk applications. Lubr. Eng. 55, 16 (1999)Google Scholar
  38. 38.
    T. Shiramatsu, M. Kurita, K. Miyake, M. Suk, S. Ohki, H. Tanaka, S. Saegusa, Drive integration of active flying-height control slider with micro thermal actuator. IEEE Trans. Magn. 42, 2513 (2006)CrossRefGoogle Scholar
  39. 39.
    M. Suk, K. Miyake, M. Kurita, H. Tanaka, S. Saegusa, N. Robertson, Verification of thermally induced nanometer actuation of magnetic recording transducer to overcome mechanical and magnetic spacing challenges. IEEE Trans. Magn. 41, 4350 (2005)CrossRefGoogle Scholar
  40. 40.
    C.M. Mate, Q. Dai, R.N. Payne, B.E. Knigge, P. Baumgart, Will the numbers add up for sub-7-nm magnetic spacings? Future metrology issues for disk drive lubricants, overcoats, and topographies. IEEE Trans. Magn. 41, 626 (2005)CrossRefGoogle Scholar
  41. 41.
    J. Li, B. Liu, W. Hua, Y. Ma, Effects of intermolecular forces on deep sub-10 nm spaced sliders. IEEE Trans. Magn. 38, 2141 (2002)CrossRefGoogle Scholar
  42. 42.
    B.H. Thornton, D.B. Bogy, Head-disk interface dynamic instability due to intermolecular forces. IEEE Trans. Magn. 39, 2420 (2003)CrossRefGoogle Scholar
  43. 43.
    Q. Dai, F. Hendriks, B. Marchon, Modeling the washboard effect at the head/disk interface. J. Appl. Phys. 96, 696 (2004)CrossRefGoogle Scholar
  44. 44.
    D. Weller, A. Moser, Thermal effect limits in ultrahigh-density magnetic recording. IEEE Trans. Magn. 35, 4423 (1999)CrossRefGoogle Scholar
  45. 45.
    M.H. Kryder, E.C. Gage, T.W. McDaniel, W.A. Challener, R.E. Rottmayer, J. Ganping, Y.-T. Hsia, M.F. Erden, Heat assisted magnetic recording. Proc. IEEE 96, 1810 (2008)CrossRefGoogle Scholar
  46. 46.
    R.E. Rottmayer, S. Batra, D. Buechel, W.A. Challener, J. Hohlfeld, Y. Kubota, L. Li, L. Bin, C. Mihalcea, K. Mountfield, K. Pelhos, C. Peng, T. Rausch, M.A. Seigler, D. Weller, X. Yang, Heat-assisted magnetic recording. IEEE Trans. Magn. 42, 2417 (2006)CrossRefGoogle Scholar
  47. 47.
    H.J. Richter, A.Y. Dobin, O. Heinonen, K.Z. Gao, R.J.M.v.d. Veerdonk, R.T. Lynch, J. Xue, D. Weller, P. Asselin, M.F. Erden, R.M. Brockie, Recording on bit-patterned media at densities of 1 Tb/in2 and beyond. IEEE Trans. Magn. 42, 2255 (2006)Google Scholar
  48. 48.
    B.D. Terris, T. Thomson, G. Hu, Patterned media for future magnetic data storage. Microsyst. Technol. 13, 189 (2007)CrossRefGoogle Scholar
  49. 49.
    J.-G. Zhu, X. Zhu, Y. Tang, Microwave assisted magnetic recording. IEEE Trans. Magn. 44, 125 (2008)CrossRefGoogle Scholar
  50. 50.
    S. Greaves, Y. Kanai, H. Muraoka, Shingled recording for 2–3 Tbit/in2. IEEE Trans. Magn. 45, 3823 (2009)CrossRefGoogle Scholar
  51. 51.
    R. Wood, M. Willlams, A. Kavcic, J. Miles, The feasibility of magnetic recording at 10 terabits per square inch on conventional media. IEEE Trans. Magn. 45, 917 (2009)CrossRefGoogle Scholar
  52. 52.
    D. Reinsel, J. Rydning, Helium Taking HDDs to New Heights. International Data Corporation, White Paper, Nov. 2013Google Scholar
  53. 53.
    Advanced Storage Industry Consortium (ASTC) (2014) ASTC Technology Roadmap 2014 v8 [Online]. http://www.idema.org/?page_id=2269. Accessed 8 Jul 2015
  54. 54.
    T.R. Albrecht, H. Arora, V. Ayanoor-Vitikkate, J.M. Beaujour, D. Bedau, D. Berman, A.L. Bogdanov, Y.A. Chapuis, J. Cushen, E.E. Dobisz, G. Doerk, G. He, M. Grobis, B. Gurney, W. Hanson, O. Hellwig, T. Hirano, P.-O. Jubert, D. Kercher, J. Lille, Z. Liu, C.M. Mate, Y. Obukhov, K.C. Patel, K. Rubin, R. Ruiz, M. Schabes, L. Wan, D. Weller, T.-W. Wu, E. Yang, Bit-patterned magnetic recording: theory, media fabrication, and recording performance. IEEE Trans. Magn. 51, 0800342 (2015)CrossRefGoogle Scholar
  55. 55.
    B. Marchon, K. Saito, B. Wilson, R. Wood, The limits of the wallace approximation for PMR recording at high areal density. IEEE Trans. Magn. 47, 3422 (2011)CrossRefGoogle Scholar
  56. 56.
    R.L. Wallace, The reproduction of magnetically recorded signals. Bell Syst. Technol. J. 30, 1145 (1951)CrossRefGoogle Scholar
  57. 57.
    R. Wood, The feasibility of magnetic recording at 1 terabit per square inch. IEEE Trans. Magn. 36, 36 (2000)CrossRefGoogle Scholar
  58. 58.
    C.M. Mate, B.K. Yen, D.C. Miller, M.F. Toney, M. Scarpulla, J.E. Frommer, New methodologies for measuring film thickness, coverage, and topography. IEEE Trans. Magn. 36, 110 (2000)CrossRefGoogle Scholar
  59. 59.
    B.K. Yen, R.L. White, R.J. Waltman, Q. Dai, D.C. Miller, A.J. Kellock, B. Marchon, P.H. Kasai, M.F. Toney, B.R. York, H. Deng, Q.F. Xiao, V. Raman, Microstructure and properties of ultrathin amorphous silicon nitride protective coating. J. Vac. Sci. Technol. A Vac. Surf. Films 21, 1895 (2003)CrossRefGoogle Scholar
  60. 60.
    V. Novotny, N. Staud, Correlation between environmental and electrochemical corrosion of thin-film magnetic recording media. J. Electrochem. Soc. 135, 2931 (1988)CrossRefGoogle Scholar
  61. 61.
    R.J. Waltman, J. Joseph, X.C. Guo, An AFM study of corrosion on rigid magnetic disks. Corros. Sci. 52, 1258 (2010)CrossRefGoogle Scholar
  62. 62.
    Information Storage Industry Consortium (INSIC) Information Storage Industry Consortium International Magnetic Tape Storage Roadmap 2012–2022, May 2012Google Scholar
  63. 63.
    M. Peters, The Technical and Operational Values of Barium Ferrite Tape Media. Enterprise Strategy Group, White Paper, Mar 2014Google Scholar
  64. 64.
    F.E. Talke, Tribology in magnetic recording technology. Ind. Lubr. Tribol. 52, 157 (2000)CrossRefGoogle Scholar
  65. 65.
    J. Wang, Dual Module RWW Tape Head Assembly. U.S. Patent US 6 690 542 B1, Fenruary 10, 2004Google Scholar
  66. 66.
    P. Poorman, The effect of tape overwrap angle and head radius on head/tape spacing and contact pressure in linear tape recording. Tribol. Int. 31, 449 (1998)CrossRefGoogle Scholar
  67. 67.
    J.B.C. Engelen, S. Furrer, H.E. Rothuizen, M.A. Lantz, Flat-profile tape-head friction and magnetic spacing. IEEE Trans. Magn. 50, 34 (2014)CrossRefGoogle Scholar
  68. 68.
    J.C. Engelen, M. Lantz, Asymmetrically wrapped flat-profile tape-head friction and spacing. Tribol. Lett. 59, 16 (2015)CrossRefGoogle Scholar
  69. 69.
    S.H. Muftu, H.F. Hinteregger, Contact Sheet Recording with a Self-acting Negative Air Bearing. U.S. Patent 6 118 626, Sept 12, 2000Google Scholar
  70. 70.
    R.J. Yeo, N. Dwivedi, L. Zhang, Z. Zhang, C.Y.H. Lim, S. Tripathy, C.S. Bhatia, Durable ultrathin silicon nitride/carbon bilayer overcoats for magnetic heads: the role of enhanced interfacial bonding. J. Appl. Phys. 117, 045310 (2015)CrossRefGoogle Scholar
  71. 71.
    M.D. Bijker, J.J.J. Bastiaens, E.A. Draaisma, L.A.M. de Jong, E. Sourty, S.O. Saied, J.L. Sullivan, The development of a thin Cr2O3 wear protective coating for the advanced digital recording system. Tribol. Int. 36, 227 (2003)CrossRefGoogle Scholar
  72. 72.
    W.W. Scott, B. Bhushan, A.V. Lakshmikumaran, Ultrathin diamond-like carbon coatings used for reduction of pole tip recession in magnetic tape heads. J. Appl. Phys. 87, 6182 (2000)CrossRefGoogle Scholar
  73. 73.
    G.S.A.M. Theunissen, Wear coatings for magnetic thin film magnetic recording heads. Tribol. Int. 31, 519 (1998)CrossRefGoogle Scholar
  74. 74.
    B. Shi, J.L. Sullivan, M.A. Wild, S.O. Saied, Study of generation mechanism of three-body particles in linear tape recording. J. Tribol. 127, 155 (2005)CrossRefGoogle Scholar
  75. 75.
    J.L. Sullivan, M.A. Wild, M.S. Hempstock, The tribology of linear tape/head interfaces and its impact on signal performance. Tribol. Int. 36, 261 (2003)CrossRefGoogle Scholar
  76. 76.
    R.G. Biskeborn, W.S. Czarnecki, G.M. Decad, R.E. Fontana, I.E. Iben, J. Liang, C. Lo, L. Randall, P. Rice, A. Ting, T. Topuria, (Invited) Linear magnetic tape heads and contact recording. ECS Trans. 50, 19 (2013)CrossRefGoogle Scholar
  77. 77.
    J.A. Wickert, Analysis of self-excited longitudinal vibration of a moving tape. J. Sound Vib. 160, 455 (1993)CrossRefGoogle Scholar
  78. 78.
    G. Cherubini, R.D. Cideciyan, L. Dellmann, E. Eleftheriou, W. Haeberle, J. Jelitto, V. Kartik, M.A. Lantz, S. Olcer, A. Pantazi, H.E. Rothuizen, D. Berman, W. Imaino, P.-O. Jubert, G. McClelland, P.V. Koeppe, K. Tsuruta, T. Harasawa, Y. Murata, A. Musha, H. Noguchi, H. Ohtsu, O. Shimizu, R. Suzuki, 29.5-Gb/in2 recording areal density on barium ferrite tape. IEEE Trans. Magn. 47, 137 (2011)CrossRefGoogle Scholar
  79. 79.
    G.M. McClelland, D. Berman, P.-O. Jubert, W. Imaino, H. Noguchi, M. Asai, H. Takano, Effect of tape longitudinal dynamics on timing recovery and channel performance. IEEE Trans. Magn. 45, 3587 (2009)CrossRefGoogle Scholar
  80. 80.
    F. Spada, Contribution of Electrochemical Processes to Increased Head-media Spacing in Tape Drives. Univeristy of California, San Diego, Information Storage Industry Consortium TAPE Program Technical Review Report, Aug. 2013Google Scholar
  81. 81.
    J. Robertson, Diamond-like amorphous carbon. Mater. Sci. Eng. R-Rep. 37, 129 (2002)CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2017

Authors and Affiliations

  1. 1.Department of Electrical and Computer EngineeringNational University of SingaporeSingaporeSingapore

Personalised recommendations