Skip to main content

Bacteriocin-Producing Rhizosphere Bacteria and Their Potential as a Biocontrol Agent

  • Chapter
  • First Online:
Book cover Rhizotrophs: Plant Growth Promotion to Bioremediation

Part of the book series: Microorganisms for Sustainability ((MICRO,volume 2))

Abstract

An alarming rise in environmental pollution due to unsafe use of chemically toxic pesticides and fertilizers in agriculture industry has stimulated researchers to search for alternative control agents with wide spectrum of actions and lesser side effects. In this context, the antimicrobial polypeptide bacteriocins produced by rhizosphere bacteria have been evaluated as potential bio-stimulants of plant growth and as biocontrol agents. Bacteriocins are ribosomally synthesized peptides demonstrating bacteriostatic or bactericidal activity against other related and unrelated microorganisms. A wide range of rhizosphere- and plant-associated bacteria have been identified as potential bacteriocin producers demonstrating wide range of inhibitory spectrum toward economically important plant pathogens. To date, approximately 500 bacteriocins have been identified and characterized of which majority are produced by rhizosphere bacteria. These antimicrobials characterized as highly potent toxins with powerful killing action, high stability, and low toxicity to humans have been considered as a viable option and a suitable alternative to chemically toxic agents used in many industrial applications. The importance of bacteriocins is well recognized in agriculture industry for their role in reducing the use of fertilizers and chemical inputs such as fungicides and insecticides. This review presents an overview of bacteriocins, their nature, mode of action, resistance, and genetics with special emphasis on bacteriocin-producing rhizosphere bacteria and their possible potential as biocontrol agents for combating bacterial plant diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abriouel H, Franz CM, Omar NB, Gálvez A (2010) Diversity and applications of Bacillus bacteriocins. FEMS Microbiol Rev 35:201–232. doi:10.1111/j.1574-6976.2010.00244.x

    Article  Google Scholar 

  • Ahmad V, Iqbal AN, Haseeb M, Khan MS (2014) Antimicrobial potential of bacteriocin producing Lysinibacillus jx 416856 against food borne pathogens, isolated from fruit and vegetable waste. Anaerobe 27:87–95

    Article  CAS  PubMed  Google Scholar 

  • Anacarso I, Bassoli L, Sabia C, Condo C (2015) Isolation and identification of LAB from plants and other vegetable matrices and microbial recombination with Enterococcus spp. Amer Res Thoughts 1:1504–1515

    Google Scholar 

  • Beattie GA (2006) Plant-associated bacteria: survey, molecular phylogeny, genomics and recent advances. In: Gnanamanickam SS (ed) Plant-associated bacteria. Springer, Dordrecht, pp 1–56

    Google Scholar 

  • Bizani D, Motta AS, Morrissy JAC et al (2005) Antibacterial activity of cerein 8A, a bacteriocin-like peptide produced by Bacillus cereus. Int Microbiol 8:125–131

    CAS  PubMed  Google Scholar 

  • Braun V, Pilsl H, Gross P (1994) Colicins: structures, mode of action, transfer through membranes and evolution. Arch Microbiol 161:199–206

    Article  CAS  PubMed  Google Scholar 

  • Cabrefiga J ( 2004) Fire blight (Erwinia amylovora) of rosaceous plants. Pathogen virulence and selection and characterization of biological control agents. Dissertation, University of Girona

    Google Scholar 

  • Chatterjee C, Paul M, Xie L, van der Donk WA (2005) Biosynthesis and mode of action of lantibiotics. Chem Rev 105:633–684

    Article  CAS  PubMed  Google Scholar 

  • Chavan MA, Riley MA (2007) Bacteriocins: molecular evolution of bacteriocins in gram negative bacteria. Springer, Heidelberg

    Google Scholar 

  • Chuang DY, Chien YC, Wu HP (2007) Cloning and expression of the Erwinia carotovora subsp. Carotovora gene encoding the low-molecular weight bacteriocin carocin S1. J Bacteriol 189(2):620–626

    Article  CAS  PubMed  Google Scholar 

  • Cintas LM, Casaus MP, Herranz C, Nes IF, Hernández PE (2001) Review: bacteriocins of lactic acid bacteria. Food Sci Tech Int 7:281–305

    Article  CAS  Google Scholar 

  • Cleveland J, Montville TJ, Nes IF, Chikindas ML (2001) Bacteriocins: safe, natural antimicrobials for food preservation. Int J Food Microbiol 71:1–20

    Article  CAS  PubMed  Google Scholar 

  • Compaoré CS, Nielsen DS, Ouoba LII et al (2013) Co-production of surfactin and a novel bacteriocin by Bacillus subtilis subsp. subtilis H4 isolated from Bikalga, an African alkaline Hibiscus sabdariffa seed fermented condiment. Int J Food Microbiol 162:297–307

    Article  PubMed  Google Scholar 

  • Cotter PD, Ross RP, Hill C (2013) Bacteriocins a viable alternative to antibiotics. Nat Rev Microbiol 11:95–105

    Article  CAS  PubMed  Google Scholar 

  • De Vuyst L, Vandamme EJ (1994) Antimicrobial potential of lactic acid bacteria in bacteriocins of lactic acid bacteria: microbiology, genetics and applications. Blackie Academic and Professional, London, pp 91–142

    Book  Google Scholar 

  • Diep DB, Skaugen M, Salehian Z, Holo H, Nes IF (2007) Common mechanisms of target cell recognition and immunity for class II bacteriocins. Proc Natl Acad Sci U S A 104:2384–2389

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Diez L, Rojo Benzares B, Zarazaga M et al (2012) Antimicrobial activity of pediocin PA-1 against Oenococcus oeni and other wine bacteria. Food Microbiol 31:167–172

    Article  CAS  PubMed  Google Scholar 

  • Dingemans J, Ghequire MK, Craggs M et al (2016) Identification and functional analysis of a bacteriocin, pyocin S6 with ribonuclease activity from a P. aeruginosa cystic fibrosis clinical isolate. Microbiol Open 5:413–423

    Article  CAS  Google Scholar 

  • Dufour A, Hindré T, Haras D, Le Pennec JP (2007) The biology of lantibiotics from the lacticin 481 group is coming of age. FEMS Microbiol Lett 31:134–167

    Article  CAS  Google Scholar 

  • Engelke G, Gutowski-Eckel Z, Hammelman M, Entian KD (1992) Biosynthesis of the lantibiotic nisin: genomic organization and membrane localization of the nisb protein. Appl Environ Microbiol 58:3730–3743

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ennahar S, Deschamps N, Richard N (2000) Natural variation in susceptibility of Listeria strains to class IIa bacteriocins. Curr Microbiol 41:1–4

    Article  CAS  PubMed  Google Scholar 

  • Franz CM, Van Belkum MJ, Holzapfel WH, Abriouel H, Gálvez A (2007) Diversity of enterococcal bacteriocins and their grouping in a new classification scheme. FEMS Microbiol Rev 31:293–310

    Article  CAS  PubMed  Google Scholar 

  • Fredericq P (1946) Sur la pluralite des recepteurs d antibiose de E. coli. C R Soc Biol 140:1189–1191

    Google Scholar 

  • Fredericq P (1957) Colicins. Annu Rev Microbiol 11:7–22

    Article  CAS  PubMed  Google Scholar 

  • Garneau S, Martin NI, Vederas JC (2002) Two peptide bacteriocins produced by LAB. Biochimie 84:577–592

    Article  CAS  PubMed  Google Scholar 

  • Ghequire MG, Li W, Proost P, De Mot R (2012) Plant lectin-like antibacterial protein from phytopathogens P. syringae and Xanthomonas citri. Environ Microbiol Rep 4:373–380

    Article  CAS  PubMed  Google Scholar 

  • Gillor O, Benjamin CK, Margaret AR (2004) Colicins and Microcins: the next generation antimicrobials. Adv Appl Microbiol 54:129–146

    Article  CAS  PubMed  Google Scholar 

  • Glick BR, Bashan Y (1997) Genetic manipulation of plant growth-promoting bacteria to enhance biocontrol of phytopathogens. Biotechnol Adv 15:353–378

    Article  CAS  PubMed  Google Scholar 

  • Gravesen A, Axelsen AM, da Silva J, Hansen TB, Knochei S (2002) Frequency of bacteriocin resistance development and associated fitness costs in L. monocytogenes. Appl Environ Microbiol 68:756–764

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gray EJ, Lee KD, Souleimanov AM et al (2006) A novel bacteriocin, thuricin17, produced by PGPR strain Bacillus thuringiensis NEB17: isolation and classification. J Appl Microbiol 100:545–554. doi:10.1111/j.1365-2672.2006.02822.x

    Article  CAS  PubMed  Google Scholar 

  • Grinter R, Milner J, Walker D (2012) Bacteriocins active against plant pathogenic bacteria. Biochem Soc Trans 40:1498–1502

    Article  CAS  PubMed  Google Scholar 

  • Hammami I, Rhouma A, Jaouadi B, Rebai A, Nesme X (2009) Optimization and biochemical characterization of a bacteriocin from a newly isolated Bacillus subtilis strain14B for biocontrol of Agrobacterium spp. strains. Lett Appl Microbiol 48:253–260. doi:10.1111/j.1472-765X.2008.02524.x

    Article  CAS  PubMed  Google Scholar 

  • Hamon Y, Peron Y (1961) Les proprieties antagonistes reciproques parmi les Erwinia. Discussion de la position taxonomique de ce genre. Compt Rend 253:913–915

    CAS  Google Scholar 

  • Heng NK, Wescombe PA, Burton JP, Jack RW, Tagg JR (2007) The diversity of bacteriocins in Gram positive bacteria. In: Riley MA, Chavan M (eds) Bacteriocins; ecology and evolution. Springer, Berlin, pp 45–92

    Chapter  Google Scholar 

  • Henning C, Gautam D, Muriana P (2015) Identification of multiple bacteriocins in Enterococcus species using an Enterococcus-specific bacteriocin PCR Array. Microorganisms 3:1–16

    Article  PubMed  PubMed Central  Google Scholar 

  • Holtsmark I, Eijsink VG, Brurberg MB (2008) Bacteriocins from plant pathogenic bacteria. FEMS Microbiol 1(280):1–7

    Article  Google Scholar 

  • Holzaphel W (1997) Use of starter cultures in fermentation on a household scale. Food Control 8:241–258

    Article  Google Scholar 

  • Horn N, Martinez MI, Martinez JM et al (1999) Enhanced production of pediocin PA 1 and co-production of nisin and pediocin PA1 by L. lactis. Appl Environ Microbiol 65:4443–4450

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hu CB, Malaphan W, Zendo T, Nakayama J, Sonomoto K (2010) Enterocin X, a novel two-peptide bacteriocin from Enterococcus faecium KU-B5, has an antibacterial spectrum entirely different from those of its component peptides. Appl Environ Microbiol 76:4542–4545

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Iwatani S, Zendo T, Sonomoto K (2011) Class IId or linear and non-pediocin-like bacteriocins. In: Drider D, Rebuffat S (eds) Prokaryotic antimicrobial peptides: from genes to applications. Springer, London, pp 237–253

    Chapter  Google Scholar 

  • Jabrane A, Sabri A, Compere P et al (2002) Characterization of Serracin P, a phage- tail like bacteriocin, and its activity against E. amylovora, the fire blight pathogen. Appl Environ Microbiol 68:5704–5710

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jacob F, Lwoff A, Siminovitch A, Wollman E (1953) Definition de quelue termes relatifs a la lysogenie. Ann Inst Pasteur (Paris) 84:222–224

    Google Scholar 

  • Joint FAO/WHO (2001, October 1–4) Expert consultation on evaluation of health and nutritional properties of probiotics in food including powder milk with live lactic acid bacteria

    Google Scholar 

  • Kabeil S, Amer MA, Matarand SM, El-Marsy MH (2008) In planta biological control of potato brown rot disease in Egypt. World J Agri Sci 4:803–810

    Google Scholar 

  • Kaur S, Kaur HP, Kanghan (2015) Evaluation of antibacterial activity of bacteriocins produced from Lactobacillus spp. isolated from rhizosphere soil. Int J Pure Appl Biosci 3:136–142

    Google Scholar 

  • Kawai Y, Kemperman R, Kok J, Saito T (2004) The circular bacteriocins gassericin A and circularin A. Curr Protein Pept Sci 5:393–398

    Article  CAS  PubMed  Google Scholar 

  • Kawamoto S, Shima J, Sato R et al (2002) Biochemical and genetic characterization of munditicin KS, an antilisterial peptide produced by E. mundtii NFRI 7393. Appl Environ Microbiol 68:3830–3840

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Klaenhammer TR (1988) Bacteriocins of lactic acid bacteria. Biochimie 70:337–349

    Article  CAS  PubMed  Google Scholar 

  • Klaenhammer TR (1993) Genetics of bacteriocins produced by lactic acid bacteria. FEMS Microbiol Rev 12(1–3):39–85

    Google Scholar 

  • Klaenhammer TR, Kullen MJ (1999) Selection and design of probiotics. Int J Food Microbiol 50:45–57

    Article  CAS  PubMed  Google Scholar 

  • Klibi N, Slimen NB, Fhoula I et al (2012) Genotypic diversity, antibiotic resistance and bacteriocin production of Enterococcus isolated from rhizospheres. Microbes Environ 27:533–537

    Article  PubMed  PubMed Central  Google Scholar 

  • Kloepper JW, Ryu C-M, Zhang SA (2004) Induced systemic resistance and promotion of plant growth by Bacillus spp. Phytopathology 94:1259–1266

    Article  CAS  PubMed  Google Scholar 

  • Kuipers OP, Beerthuyzen MM, Siezen RJ, Devos WM (1993) Characterization of the nisin gene-cluster nisABTCIPR of Lactococcus lactis–requirement of expression of the nisA and nisI genes for development of immunity. Eur J Biochem 216:281–291

    Article  CAS  PubMed  Google Scholar 

  • Lavermicocca P, Lonigro SL, Valerio F, Evidente A, Visconti A (2002) Reduction of olive knot disease by a bacteriocin from Pseudomonas syringae pv. ciccaronei. Appl Environ Microbiol 68:1403–1407

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee H, Churey JJ, Worobo RW (2009a) Biosynthesis and transcriptional analysis of thurincin H, a tandem repeated bacteriocin genetic locus, produced by Bacillus thuringiensis SF361. FEMS Microbiol Lett 299:205–213

    Article  CAS  PubMed  Google Scholar 

  • Lee K, Gray EJ, Mabood F et al (2009b) The class IId bacteriocin thuricin-17 increases plant growth. Planta 229:747–755

    Article  CAS  PubMed  Google Scholar 

  • Mantovani HC, Russell JB (2001) Nisin resistance of Streptococcus bovis. Appl Environ Microbiol 67:808–813

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maqueda M, Hidalgo MS, Fernandez M et al (2008) Genetic features of circular bacteriocins produced by Gram positive bacteria. FEMS Microbiol Rev 32:2–22

    Article  CAS  PubMed  Google Scholar 

  • Mclntyre J, Kuc J, Williams EB (1973) Protection of pear against fire blight by bacteria and bacterial sonicates. Phytopathology 63:872–877

    Article  Google Scholar 

  • Michel-Briand Y, Baysse C (2002) The pyocins of P. aeruginosa. Biochimie 84:499–510

    Article  CAS  PubMed  Google Scholar 

  • Mojgani N, Sabiri G, Ashtiani MP, Torshizi MK (2009) Characterization of bacteriocins produced by L.brevis NM 24 and L. fermentum NM332 isolated from green olives in Iran. Internet J Microbiol 6(2)

    Google Scholar 

  • Mojgani N, Ameli M, Narjis V, Torshizi MA, Amirinia C (2010) Growth control of Listeria monocytogenes in experimental cheese samples by Lactobacillus casei RN 78 and its bacteriocin. Afr J Microbiol Res 4:1044–1050

    CAS  Google Scholar 

  • Montesinos E (2007) Antimicrobial peptides and plant disease control. FEMS Microbiol Lett 270:1–11

    Article  CAS  PubMed  Google Scholar 

  • Nes IF, Holo H (2000) Class II antimicrobial peptides from lactic acid bacteria. Biopolymers 55:50–61

    Article  CAS  PubMed  Google Scholar 

  • Nguyen HA, Tomita T, Hirota M, Sato T, Kamio Y (1999) A simple purification method and morphology and component analyses for carotovoricin Er, a phage tail like bacteriocin from the plant pathogen Erwinia carotovora Er. Biosci Biotechnol Biochem 63:1360–1369

    Article  CAS  PubMed  Google Scholar 

  • Oman TJ, Boettcher JM, Wang H et al (2011) Sublancin is not a lantibiotic but an S-linked glycopeptide. Nat Chem Biol 7:78–80

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Oscariz JC, Pisabarro AG (2001) Classification and mode of action of membrane-active bacteriocins produced by gram-positive bacteria. Int Microbiol 4:13–19

    CAS  PubMed  Google Scholar 

  • Parret AH, Schoofs G, Proost P, de Mot R (2003) Plant lectin-like bacteriocin from a rhizosphere-colonizing Pseudomonas isolate. J Bacteriol 185:897–908

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Parret AH, Temmerman K, De Mot R (2005) Novel lectin-like bacteriocins of biocontrol strain Pseudomonas fluorescens Pf-5. Appl Environ Microbiol 71:5197–5207

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Podile AR, Kishore GK (2006) Plant growth-promoting rhizobacteria. In: Gnanamanickam SS (ed) Plant-associated bacteria. Springer, Dordrecht, pp 195–230

    Chapter  Google Scholar 

  • Pugsley A (1984) The ins and outs of colicins. Microbiol Sci 1(168–175):203–205. 09–819

    Google Scholar 

  • Pugsley AP, Oudega B (1987) Methods of studying colicins and their plasmids. In: Hardy KG (ed) Plasmids, a practical approach. IRL Press, Oxford, pp 105–161

    Google Scholar 

  • Riley MA, Gordon DM (1992) A survey of col plasmids in natural isolates of E. coli and an investigation into the stability of col plasmid lineages. J Gen Microbiol 138:1345–1352

    Article  CAS  PubMed  Google Scholar 

  • Riley MA, Wertz JE (2002) Bacteriocins: evolution, ecology and application. Ann Rev Microbiol 56:117–137

    Article  CAS  Google Scholar 

  • Rogers LA, Whittier EO (1928) Limiting factors in lactic fermentation. J Bacteriol 16:211–229

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ruiz-Larrea F, Rojo-Bezares B, Sáenz Y, Navarro L, Díez L (2007) Bacteriocins for wine microbiological control and reduction of SO2 levels. De la Vigne et du Vin:1–13

    Google Scholar 

  • Sakthivel N, Mew TW (1991) Efficacy of bacteriocinogenic strains of Xanthomonas oryzae pv. oryzae on the incidence of bacterial blight disease of rice (Oryza sativa L.) Can J Microbiol 37:764–768

    Article  CAS  Google Scholar 

  • Sanchez-Hidalgo M, Maqueda M, Galvez A et al (2003) The genes coding for enterocin EJ97 production by E. faecalis EJ97 are located on a conjugative plasmid. Appl Environ Microbiol 69:1633–1641

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Scholz R, Vater J, Budiharjo A et al (2014) Amylocyclicin, a novel circular bacteriocin produced by Bacillus amyloliquefaciens FZB42. J Bacteriol 196:1842–1852

    Article  PubMed  PubMed Central  Google Scholar 

  • Scupham AJ, Triplett EW (2006) Determination of the amino acid residues required for the activity of the anti-rhizobial peptide antibiotic trifolitoxin. J Appl Microbiol 100:500–507

    Article  CAS  PubMed  Google Scholar 

  • Severinov K, Semenova AK, Kazakov T, Gelfand MS (2007) Low molecular weight post translationally modified microcins. Mol Micobiol 65:1380–1394

    Article  CAS  Google Scholar 

  • Sieiro AP, Lopez MM, Mu D, Kuipers OP (2016) Bacteriocins of LAB: extending the family. Appl Microbiol Biotechnol 100:2939–2951

    Article  Google Scholar 

  • Sisto A, Cipriani M, Morea M et al (2010) An rhs-like genetic element is involved in bacteriocin production by P. savastanoi pv savastanoi. Antonie Van Leeuwenhoek 98:505–517

    Article  CAS  PubMed  Google Scholar 

  • Stepper J, Shashtri S, Loo TS et al (2011) Cysteine S glycosylation, a new post-translational modification found in glycopeptide bacteriocins. FEBS Lett 585:645–650

    Article  CAS  PubMed  Google Scholar 

  • Stirling AC, Whittenburg R (1963) Sources of the LAB occurring in silage. J Appl Bacteriol 26:86–90

    Article  Google Scholar 

  • Stockwell VO, Kawalek MD, Moore LW, Loper JE (1996) Transfer of pAgK84 from the biocontrol agent Agrobacterium radiobacter K84 to A.tumefaciens under field conditions. Amer Phytopathol Soc 1120-03R

    Google Scholar 

  • Subramanian S, Smith DL (2015) Bacteriocins from the rhizosphere microbiome – from an agriculture perspective. Front Plant Sci 6:909

    PubMed  PubMed Central  Google Scholar 

  • Tagg JR, Dajani AS, Wannamaker LW (1976) Bacteriocins of gram positive bacteria. Bacteriol Rev 40:722–756

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tovkach FI (1998) Biological properties and classification of Erwinia carotovora bacteriocins. Mikrobiologia 67:636–642

    CAS  Google Scholar 

  • WHO (1969) Specification for the identity and purity of food additives and their toxicological evolution. 12th report the joint FAO/WHO Expert Committee on Food Additives, WHO Tech. Rept. Series No 430. World Health Organization, Geneva

    Google Scholar 

  • Yamada K, Hirota M, Niimi Y et al (2006) Nucleotide sequences and organization of the genes for carotovoricin (Ctv) from Erwinia carotovora indicate that Ctv evolved from the same ancestor as Salmonella typhi prophage. Biosci Biotechnol Biochem 70:2236–2247

    Article  CAS  PubMed  Google Scholar 

  • Zhang X, Clark CA, Pettis GS (2003) Interstrain inhibition in the sweet potato pathogen Streptomyces ipomoeae: purification and characterization of a highly specific bacteriocin and cloning of its structural gene. Appl Environ Microbiol 69:2201–2208

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang J, Liu G, Shang N, Cheng W, Chen S (2009) Purification and partial amino acid sequence of pentocin 31–1, an anti-listeria bacteriocin produced by Lactobacillus pentosus 31–1. J Food Prot 72:2524–2529

    Article  CAS  PubMed  Google Scholar 

  • Zimmermann N, Jung G (1997) The three-dimensional solution structure of the lantibiotic murein-biosynthesis inhibitor actagardine determined by NMR. Eur J Biochem 246:809–819

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Naheed Mojgani .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd.

About this chapter

Cite this chapter

Mojgani, N. (2017). Bacteriocin-Producing Rhizosphere Bacteria and Their Potential as a Biocontrol Agent. In: Mehnaz, S. (eds) Rhizotrophs: Plant Growth Promotion to Bioremediation. Microorganisms for Sustainability, vol 2. Springer, Singapore. https://doi.org/10.1007/978-981-10-4862-3_8

Download citation

Publish with us

Policies and ethics