Skip to main content

Feature Co-occurrence for Visual Labeling

  • Chapter
  • First Online:
Visual Pattern Discovery and Recognition

Part of the book series: SpringerBriefs in Computer Science ((BRIEFSCOMPUTER))

  • 1012 Accesses

Abstract

Due to the difficulties in obtaining labeled visual data, there has been an increasing interest to label a limited amount of data and then propagate the initial labels to a large amount of unlabeled data. In this chapter, we propose a transductive label propagation algorithm by leveraging the advantages of feature co-occurrence patterns in visual disambiguity. We formulate the label propagation problem by introducing a smooth regularization that ensures similar feature co-occurrence patterns share the same label. To optimize our objective function, we propose an alternating method to decouple feature co-occurrence pattern discovery and transductive label propagation. The effectiveness of the proposed method is validated by both synthetic and real image data.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bache, K., Lichman, M.: UCI Mach. Learn. Repository (2013). http://archive.ics.uci.edu/ml

  2. Demmel, J.W., Marques, O.A., Parlett, B.N., Vömel, C.: Performance and accuracy of lapack’s symmetric tridiagonal eigensolvers. SIAM J. Sci. Comput. 30(3), 1508–1526 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  3. Erdem, A., Pelillo, M.: Graph transduction as a noncooperative game. Neural Comput. 24(3), 700–723 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  4. Kumar, A., Rai, P., III, H.D.: Co-regularized multi-view spectral clustering. In: Proceedings of Advances in Neural Information Processing Systems, pp. 1413–1421 (2011)

    Google Scholar 

  5. Liu, J., Wang, C., Danilevsky, M., Han, J.: Large-scale spectral clustering on graphs. In: Proceedings of International Joint Conference on Artificial Intelligence (2013)

    Google Scholar 

  6. Lütkepohl, H.: Handbook of Matrices. Wiley, New Jersey (1996)

    Google Scholar 

  7. Ng, A., Jordan, M., Weiss, Y.: On spectral clustering: Analysis and an algorithm. Proc. Adv. Neural Inf. Process. Syst. 2, 849–856 (2001)

    Google Scholar 

  8. Nilsback, M., Zisserman, A.: A visual vocabulary for flower classification. Proc. IEEE Conf. Comput. Vis. Pattern Recogni. 2, 1447–1454 (2006)

    Google Scholar 

  9. Nilsback, M.E., Zisserman, A.: Automated flower classification over a large number of classes. In: Proceedings of Indian Conference on Computer Vision, Graphics & Image Processing (2008)

    Google Scholar 

  10. Soomro, K., Zamir, A.R., Shah, M.: UCF101: A dataset of 101 human actions classes from videos in the wild (2012). arXiv:1212.0402

  11. van Breukelen, M.P.W., Tax, D.M.J., den Hartog, J.E.: Handwritten digit recognition by combined classifiers. Kybernetika 34, 381–386 (1998)

    MATH  Google Scholar 

  12. Von Luxburg, U.: A tutorial on spectral clustering. Stat. Comput. 17(4), 395–416 (2007)

    Article  MathSciNet  Google Scholar 

  13. Wang, H., Yuan, J.: Collaborative multifeature fusion for transductive spectral learning. IEEE Trans. Cybern. 45(3), 466–475 (2015)

    Google Scholar 

  14. Wang, J., Jebara, T., Chang, S.: Graph transduction via alternating minimization. In: Proceedings of International Conference on Machine Learning, pp. 1144–1151 (2008)

    Google Scholar 

  15. Wang, H., Klaser, A., Schmid, C., Liu, C.L.: Action recognition by dense trajectories. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, pp. 3169–3176 (2011)

    Google Scholar 

  16. Wang, J., Jebara, T., Chang, S.F.: Semi-supervised learning using greedy max-cut. J. Mach. Learn. Res. 14(1), 771–800 (2013)

    MathSciNet  MATH  Google Scholar 

  17. Wang, J., Yang, J., Yu, K., Lv, F., Huang, T., Gong, Y.: Locality-constrained linear coding for image classification. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (2010)

    Google Scholar 

  18. Yang, Y., Newsam, S.: Spatial pyramid co-occurrence for image classification. In: Proceedings of IEEE International Conference on Computer Vision (2011)

    Google Scholar 

  19. Zhou, D., Burges, C.: Spectral clustering and transductive learning with multiple views. In: Proceedings of International Conference on Machine Learning, pp. 1159–1166 (2007)

    Google Scholar 

  20. Zhou, T., Tao, D.: Bilateral random projections. In: IEEE International Symposium on Information Theory, pp. 1286–1290. IEEE (2012)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hongxing Wang .

Rights and permissions

Reprints and permissions

Copyright information

© 2017 The Author(s)

About this chapter

Cite this chapter

Wang, H., Weng, C., Yuan, J. (2017). Feature Co-occurrence for Visual Labeling. In: Visual Pattern Discovery and Recognition. SpringerBriefs in Computer Science. Springer, Singapore. https://doi.org/10.1007/978-981-10-4840-1_4

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-4840-1_4

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-4839-5

  • Online ISBN: 978-981-10-4840-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics