Skip to main content
  • 846 Accesses

Abstract

Vascular smooth muscle, which is located in the tunica media layer of the vascular wall, is the primary player to enable the blood vessel to constrict and dilate. This is fulfilled by the interaction of thin and thick filaments of the contractile apparatus. These filaments in the smooth muscle are organized differently from striated muscle, termed side polar geometry. Such an arrangement gives the blood vessel high adaptational capacity in contractility. Several cell organelles including sarcoplasmic reticulum, mitochondria, caveolae, and cytoskeleton are indispensable for the contractile functionality, which are involved in the regulation of cytosol calcium level, ATP generation, signal transduction, and cell shape adaptation in response to the contractile status. In this chapter, the current understanding of the ultrastructural characteristics of these cellular components of vascular smooth muscle will be reviewed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Amador FJ, Stathopulos PB, Enomoto M, Ikura M (2013) Ryanodine receptor calcium release channels: lessons from structure-function studies. FEBS J 280:5456–5470

    Article  CAS  PubMed  Google Scholar 

  • Bednarek ML, Speich JE, Miner AS, Ratz PH (2011) Active tension adaptation at a shortened arterial muscle length: inhibition by cytochalasin-D. Am J Physiol Heart Circ Physiol 300:H1166–H1173

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bernatchez P, Sharma A, Bauer PM, Marin E, SessaWC (2011) A noninhibitory mutant of the caveolin-1scaffolding domain enhances NOS-derived NO synthesis and vasodilation in mice. J Clin Invest 121: 3747–3755

    Google Scholar 

  • Bublitz M, Musgaard M, Poulsen H, Thøgersen L, Olesen C, Schiøtt B, Morth JP, Møller JV, Nissen P (2013) Ion pathways in the sarcoplasmic reticulum Ca2+-ATPase. J Biol Chem 288:10759–10765

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chalmers S, Olson ML, MacMillan D, Rainbow RD, McCarron JG (2007) Ion channels in smooth muscle: regulation by the sarcoplasmic reticulum and mitochondria. Cell Calcium 42:447–466

    Article  CAS  PubMed  Google Scholar 

  • Chamley JH, Campbell GR, McConnell JD, Gröschel-Stewart U (1977) Comparison of vascular smooth muscle cells from adult human, monkey and rabbit in primary culture and in subculture. Cell Tissue Res 177:503–522

    CAS  PubMed  Google Scholar 

  • Chidlow JH Jr, Sessa WC (2010) Caveolae, caveolins, and cavins: complex control of cellular signalling and inflammation. Cardiovasc Res 86:219–225

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Craig R, Woodhead JL (2006) Structure and function of myosin filaments. Curr Opin Struct Biol 16:204–212

    Article  CAS  PubMed  Google Scholar 

  • Devine CE, Somlyo AV, Somlyo AP (1972) Sarcoplasmic reticulum and excitation-contraction coupling in mammalian smooth muscles. J Cell Bio 52:690–718

    Article  CAS  Google Scholar 

  • Eddinger TJ, Meer DP (2007) Myosin II isoforms in smooth muscle: heterogeneity and function. Am J Physiol Cell Physiol 293:C493–C508

    Article  CAS  PubMed  Google Scholar 

  • Gao Y (2015) Vascular smooth muscle (Chapter 3). In: Dong E, Zhang Y (eds) Vascular biology, 2nd edn. Peking University Medical Press, Beijing, pp p28–p42. in Chinese

    Google Scholar 

  • Gunst SJ, Zhang W (2008) Actin cytoskeletal dynamics in smooth muscle: a new paradigm for the regulation of smooth muscle contraction. Am J Physiol Cell Physiol 295:C576–C587

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hardin CD, Vallejo J (2006) Caveolins in vascular smooth muscle: form organizing function. Cardiovasc Res 69:808–815

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hill MA, Meininger GA (2012) Arteriolar vascular smooth muscle cells: mechanotransducers in a complex environment. Int J Biochem Cell Biol 44:1505–1510

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim HR, Gallant C, Leavis PC, Gunst SJ, Morgan KG (2008) Cytoskeletal remodeling in differentiated vascular smooth muscle is actin isoform dependent and stimulus dependent. Am J Physiol Cell Physiol 295:C768–C778

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lan B, Deng L, Donovan GM, Chin LY, Syyong HT, Wang L, Zhang J, Pascoe CD, Norris BA, Liu JC, Swyngedouw NE, Banaem SM, Paré PD, Seow CY (2015) Force maintenance and myosin filament assembly regulated by Rho-kinase in airway smooth muscle. Am J Physiol Lung Cell Mol Physiol 308:L1–L10

    Article  CAS  PubMed  Google Scholar 

  • Lehman W, Morgan KG (2012) Structure and dynamics of the actin-based smooth muscle contractile and cytoskeletal apparatus. J Muscle Res Cell Motil 33:461–469

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu JC, Rottler J, Wang L, Zhang J, Pascoe CD, Lan B, Norris BA, Herrera AM, Paré PD, Seow CY (2013) Myosin filaments in smooth muscle cells do not have a constant length. J Physiol 591:5867–5878

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Marston S, El-Mezgueldi M (2008) Role of Tropomyosin in the regulation of contraction in smooth muscle. Adv Exp Med Biol 644:110–123

    Article  CAS  PubMed  Google Scholar 

  • Marston SB, Smith CW (1985) The thin filaments of smooth muscles. J Muscle Res Cell Motil 6:669–708

    Article  CAS  PubMed  Google Scholar 

  • McCarron JG, Wilson C, Sandison ME, Olson ML, Girkin JM, Saunter C, Chalmers S (2013) From structure to function: mitochondrial morphology, motion and shaping in vascular smooth muscle. J Vasc Res 50:357–371

    Article  PubMed  PubMed Central  Google Scholar 

  • Mironneau J, Coussin F, Jeyakumar LH, Fleischer S, Mironneau C, Macrez N (2001) Contribution of ryanodine receptor subtype 3 to Ca2+- responses in Ca2+ -overloaded cultured rat portal vein myocytes. J Biol Chem 276:11257–11264

    Article  CAS  PubMed  Google Scholar 

  • Narayanan D, Adebiyi A, Jaggar JH (2012) Inositol trisphosphate receptors in smooth muscle cells. Am J Physiol Heart Circ Physiol 302:H2190–H2210

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Prakriya M, Lewis RS (2015) Store-operated calcium channels. Physiol Rev 95:1383–1436

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rensen SS, Doevendans PA, van Eys GJ (2007) Regulation and characteristics of vascular smooth muscle cell phenotypic diversity. Neth Heart J 15:100–108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Roman HN, Zitouni NB, Kachmar L, Ijpma G, Hilbert L, Matusovsky O, Benedetti A, Sobieszek A, Lauzon AM (2013) Unphosphorylated calponin enhances the binding force of unphosphorylated myosin to actin. Biochim Biophys Acta 1830:4634–4641

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Seow CY (2005) Myosin filament assembly in an ever-changing myofilament lattice of smooth muscle. Am J Physiol Cell Physiol 289:C1363–C1368

    Article  CAS  PubMed  Google Scholar 

  • Serysheva II (2014) Toward a high-resolution structure of IP3R channel. Cell Calcium 56:125–132

    Google Scholar 

  • Sowa G (2012) Caveolae, caveolins, cavins, and endothelial cell function: new insights. Front Physiol 2:120

    Article  PubMed  PubMed Central  Google Scholar 

  • Tang DD (2008) Intermediate filaments in smooth muscle. Am J Physiol Cell Physiol 294:C869–C878

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Taylor KA, Feig M, Brooks CL 3rd, Fagnant PM, Lowey S, Trybus KM (2014) Role of the essential light chain in the activation of smooth muscle myosin by regulatory light chain phosphorylation. J Struct Biol 185:375–382

    Article  CAS  PubMed  Google Scholar 

  • Thoresen T, Lenz M, Gardel ML (2013) Thick filament length and isoform composition determine self-organized contractile units in actomyosin bundles. Biophys J 104:655–665

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang CL (2008) Caldesmon and the regulation of cytoskeletal functions. Adv Exp Med Biol 644:250–272

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Winder SJ, Allen BG, Clément-Chomienne O, Walsh MP (1998) Regulation of smooth muscle actin-myosin interaction and force by calponin. Acta Physiol Scand 164:415–426

    Article  CAS  PubMed  Google Scholar 

  • Wray S, Burdyga T (2010) Sarcoplasmic reticulum function in smooth muscle. Physiol Rev 90:113–178

    Article  CAS  PubMed  Google Scholar 

  • Yamin R, Morgan KG (2012) Deciphering actin cytoskeletal function in the contractile vascular smooth muscle cell. J Physiol 590:4145–4154

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang Y, Hermanson ME, Eddinger TJ (2013) Tonic and phasic smooth muscle contraction is not regulated by the PKCα - CPI-17 pathway in swine stomach antrum and fundus. PLoS One 8:e74608

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zheng YM, Wang QS, Rathore R, Zhang WH, Mazurkiewicz JE, Sorrentino V, Singer HA, Kotlikoff MI, Wang YX (2005) Type-3 ryanodine receptors mediate hypoxia-, but not neurotransmitter-induced calcium release and contraction in pulmonary artery smooth muscle cells. J Gen Physiol 125:427–440

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhuge R, Fogarty KE, Tuft RA, Walsh JV Jr (2002) Spontaneous transient outward currents arise from microdomains where BK channels are exposed to a mean Ca2+ concentration on the order of 10 microM during a Ca2+ spark. J Gen Physiol 120:15–27

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd.

About this chapter

Cite this chapter

Gao, Y. (2017). Ultrastructure of Vascular Smooth Muscle. In: Biology of Vascular Smooth Muscle: Vasoconstriction and Dilatation. Springer, Singapore. https://doi.org/10.1007/978-981-10-4810-4_2

Download citation

Publish with us

Policies and ethics