Advertisement

Outlook for Next-Generation Micro-/Nanoimaging Probes

  • Run Chang
  • Ming Gao
  • Linlin Sun
  • Doudou Wang
  • Zhe Liu
  • Thomas J. WebsterEmail author
Chapter
Part of the Engineering Materials book series (ENG.MAT.)

Abstract

Innovations for the next-generation of micro-/nanoimaging probes require multiple functions and roles to serve not only targeted imaging but also precision treatments. That is, the development of theranostic agents used for visualized medicine, image-guided therapy, or image-navigated surgery will dramatically extend their application scope, boost processing for clinical uses and bridge materials, and integrate bioengineering and medicine. This chapter provides an outlook for this bright future and focuses on several ever-growing subjects, including aggregation-induced emission probes, image-guided treatment technologies, and nanoimaging probes for bacteria detection.

References

  1. 1.
    Nagaya, T., Nakamura, Y.A., Choyke, P.L., Kobayashi, H.: Fluorescence-guided surgery. Front. Oncol. 22, 314 (2017)CrossRefGoogle Scholar
  2. 2.
    Ma, Y.Y., Jin, K.T., Wang, S.B., Wang, H.J., Tong, X.M., Huang, D.S., Mou, X.Z.: Molecular imaging of cancer with nanoparticle-based theranostic probes. Contrast Media Mol. Imaging (2017).  https://doi.org/10.1155/2017/1026270CrossRefGoogle Scholar
  3. 3.
    Mi, P., Wang, F., Nishiyama, N., Cabral, H.: Molecular cancer imaging with polymeric nanoassemblies: from tumor detection to theranostics. Macromol. Biosci. (2017).  https://doi.org/10.1002/mabi.201600305CrossRefGoogle Scholar
  4. 4.
    Onoshima, D., Yukawa, H., Baba, Y.: Multifunctional quantum dots-based cancer diagnostics and stem cell therapeutics for regenerative medicine. Adv. Drug Deliv. Rev. 95, 2–14 (2015)CrossRefGoogle Scholar
  5. 5.
    Bluemel, C., Matthies, P., Herrmann, K., Povoski, S.P.: 3D scintigraphic imaging and navigation in radioguided surgery: freehand SPECT technology and its clinical applications. Expert Rev. Med. Devices 13, 339–351 (2016)CrossRefGoogle Scholar
  6. 6.
    Harmsen, S., Teraphongphom, N., Tweedle, M.F., Basilion, J.P., Rosenthal, E.L.: Optical surgical navigation for precision tumor resections. Mol. Imaging Biol. 19, 357–362 (2017)CrossRefGoogle Scholar
  7. 7.
    Zheng, M., Yue, C., Ma, Y., Gong, P., Zhao, P., Zheng, C., Sheng, Z., Zhang, P., Wang, Z., Cai, L.: Single-step assembly of DOX/ICG loaded lipid-polymer nanoparticles for highly effective chemo-photothermal combination therapy. ACS Nano 7, 2056–2067 (2013)CrossRefGoogle Scholar
  8. 8.
    Liang, X., Gao, C., Cui, L., Wang, S., Wang, J., Dai, Z.: Self-assembly of an amphiphilic janus camptothecin-floxuridine conjugate into liposome-like nanoparticles for more efficacious combination chemotherapy in cancer. Adv. Mater. 29, 1703135 (2017)CrossRefGoogle Scholar
  9. 9.
    Mei, J., Leung, N.L., Kowk, R.T., Lam, J.W., Tang, B.Z.: Aggregation-induced emission: together we shine, united we soar! Chem. Rev. 115, 11718–11940 (2015)CrossRefGoogle Scholar
  10. 10.
    Gao, M., Tang, B.Z.: Fluorescent sensors based on aggregation-induced emission: recent advances and perspectives. ACS Sens. 2, 1382–1399 (2017)CrossRefGoogle Scholar
  11. 11.
    Venkatramaiah, N., Kumar, G.D., Chandrasekaran, Y., Ganduri, R., Patil, S.: Efficient blue and yellow organic light-emitting diodes enabled by aggregation-induced emission. ACS Appl. Mater. Interfaces. 10, 3838–3847 (2018)CrossRefGoogle Scholar
  12. 12.
    Sugiuchi, M., Maeba, J., Okubo, N., Iwamura, M., Nozaki, K., Konishi, K.: Aggregation-induced fluorescence-to-phosphorescence switching of molecular gold clusters. J. Am. Chem. Soc. 139, 17731–17734 (2017)CrossRefGoogle Scholar
  13. 13.
    Cheng, Y., Wang, J., Qiu, Z., Zheng, X., Leung, N.L.C., Lam, J.W.Y., Tang, B.Z.: Multiscale humidity visualization by environmentally sensitive fluorescent molecular rotors. Adv. Mater. 29, 1703900 (2017)CrossRefGoogle Scholar
  14. 14.
    Wang, Y., Chen, M., Alifu, N., Li, S., Qin, W., Qin, A., Tang, B.Z., Qian, J.: Aggregation-induced emission luminogen with deep-red emission for through-skull three-photon fluorescence imaging of mouse. ACS Nano 11, 10452–10461 (2017)CrossRefGoogle Scholar
  15. 15.
    Zhang, S., Qin, A.J., Sun, J.Z., Tang, B.Z.: Aggregation-induced luminescence mechanism. Prog. Chem. 23, 623–636 (2011)Google Scholar
  16. 16.
    Chen, J., Law, C.W., Lam, J.W.Y., Dong, Y., Lo, S.M.F., Williams, I.D., Zhu, D.B., Tang, B.Z.: Synthesis, light emission, nanoaggregation, and restricted intramolecular rotation of 1,1-substituted 2,3,4,5-tetraphenylsiloles. Chem. Mater. 15, 1535–1546 (2003)CrossRefGoogle Scholar
  17. 17.
    La, D.D., Bhosale, S.V., Jones, L.A., Bhosale, S.V.: Tetraphenylethylene-based AIE-active probes for sensing applications. ACS Appl. Mater. Interfaces (2017).  https://doi.org/10.1021/acsami.7b12320CrossRefGoogle Scholar
  18. 18.
    Dong, Y., Lam, J.W.Y., Qin, A., Li, Z., Liu, J., Sun, J., Dong, Y., Tang, B.Z.: Endowing hexaphenylsilole with chemical sensory and biological probing properties by attaching amino pendants to the silolyl core. Chem. Phys. Lett. 446, 124–127 (2007)CrossRefGoogle Scholar
  19. 19.
    Jin, J., Chen, X., Liu, Y., Qin, A.J., Sun, J., Tang, B.Z.: Detection of ctDNA with water soluble tetraphenylethylene-based fluorescence probe. Acta Polym. Sin. 11, 1079–1085 (2011)CrossRefGoogle Scholar
  20. 20.
    Chan, C.P., Haeussler, M., Tang, B.Z., Dong, Y., Sin, K.K., Mak, W.C., Trau, D., Seydack, M., Renneberg, R.: Silole nanocrystals as novel biolabels. J. Immunol. Methods 295, 111–118 (2004)CrossRefGoogle Scholar
  21. 21.
    Han, T., Cathy, K.W.J., Jacky, W.Y.L., Tang, B.Z.: Polyynes with aggregation-induced emission characteristics: synthesis and their photonic properties. Acta Chim. Sin. 74, 877–884 (2016)CrossRefGoogle Scholar
  22. 22.
    Liu, Y., Wang, Z., Qin, W., Hu, Q., Tang, B.Z.: Fluorescent detection of Cu(II) by chitosan-based AIE bioconjugate. Chin. J. Polym. Sci. 35, 365–371 (2017)CrossRefGoogle Scholar
  23. 23.
    Kim, D.H., Chen, J., Omary, R.A., Larson, A.C.: MRI visible drug eluting magnetic microspheres for transcatheter intra-arterial delivery to liver tumors. Theranostics 5, 477–488 (2015)CrossRefGoogle Scholar
  24. 24.
    Yang, F., Liu, S., Liu, X., Liu, L., Luo, M., Qi, S., Xu, G., Qiao, S., Lv, X., Li, X., Fu, L., Luo, Q., Zhang, Z.: In vivo visualization of tumor antigen-containing microparticles generated in fluorescent-protein-elicited immunity. Theranostics 6, 1453–1466 (2016)CrossRefGoogle Scholar
  25. 25.
    Santos, M.A., Goertz, D.E., Hynynen, K.: Focused ultrasound hyperthermia mediated drug delivery using thermosensitive liposomes and visualized with in vivo two-photon microscopy. Theranostics 7, 2718–2731 (2017)CrossRefGoogle Scholar
  26. 26.
    Mikula, H., Stapleton, S., Kohler, R.H., Vinegoni, C., Weissleder, R.: Design and development of fluorescent vemurafenib analogs for in vivo imaging. Theranostics 7, 1257–1265 (2017)CrossRefGoogle Scholar
  27. 27.
    Sun, X., Gao, D., Gao, L., Zhang, C., Yu, X., Jia, B., Wang, F., Liu, Z.: Molecular imaging of tumor-infiltrating macrophages in a preclinical mouse model of breast cancer. Theranostics 5, 597–608 (2015)CrossRefGoogle Scholar
  28. 28.
    Lozano, N., Al-Ahmady, Z.S., Beziere, N.S., Ntziachristos, V., Kostarelos, K.: Monoclonal antibody-targeted PEGylated liposome-ICG encapsulating doxorubicin as a potential theranostic agent. Int. J. Pharm. 482, 2–10 (2015)CrossRefGoogle Scholar
  29. 29.
    Matsui, A., Tanaka, E., Choi, H.S., Winer, J.H., Kianzad, V., Gioux, S., Laurence, R.G., Frangioni, J.V.: Real-time intra-operative near-infrared fluorescence identification of the extrahepatic bile ducts using clinically available contrast agents. Surgery 148, 87–95 (2010)CrossRefGoogle Scholar
  30. 30.
    Liu, Y., Bauer, A.Q., Akers, W.J., Sudlow, G., Shen, D., Berezin, M.Y., Culver, J.P., Achilefu, S.: Hands-free, wireless goggles for near-infrared fluorescence and real-time image-guided surgery. Surgery 149, 689–698 (2011)CrossRefGoogle Scholar
  31. 31.
    Achilefu, S.: Rapid response activatable molecular probes for intraoperative optical image-guided tumor resection. Hepatology 56, 1170–1173 (2012)CrossRefGoogle Scholar
  32. 32.
    Urano, Y., Sakabe, M., Kosaka, N., Ogawa, M., Mitsunaga, M., Asanuma, D., Kamiya, M., Young, M.R., Nagano, T., Choyke, P.L., Kobayashi, H.: Rapid cancer detection by topically spraying a γ-glutamyltranspeptidase-activated fluorescent probe. Sci. Transl. Med. 3, 110ra119 (2011)CrossRefGoogle Scholar
  33. 33.
    Pignata, C., D’Angelo, D., Fea, E., Gilli, G.: A review on microbiological decontamination of fresh produce with nonthermal plasma. J. Appl. Microbiol. 122, 1438–1455 (2017)CrossRefGoogle Scholar
  34. 34.
    Centers for Disease Control and Prevention. https://www.cdc.gov/hai/. Accessed 27 May 2016
  35. 35.
    Bolla, J.-M., Alibert-Franco, S., Handzlik, J., Chevalier, J., Mahamoud, A., Boyer, G., Kiec-Kononowicz, K., Pages, J.-M.: Strategies for bypassing the membrane barrier in multidrug resistant Gram-negative bacteria. FEBS Lett. 585, 1682–1690 (2011)CrossRefGoogle Scholar
  36. 36.
    Wu, M.-C., Deokar, A.R., Liao, J.-H., Shih, P.-Y., Ling, Y.-C.: Graphene-based photothermal agent for rapid and effective killing of bacteria. ACS Nano 7, 1281–1290 (2013)CrossRefGoogle Scholar
  37. 37.
  38. 38.
    Band, V.I., Crispell, E.K., Napier, B.A., Herrera, C.M., Tharp, G.K., Vavikolanu, K., Pohl, J., Read, T.D., Bosinger, S.E., Trent, M.S., Burd, E.M., Weiss, D.S.: Antibiotic failure mediated by a resistant subpopulation in Enterobacter cloacae. Nat. Microbiol. 1, 16053 (2016)CrossRefGoogle Scholar
  39. 39.
    Sismaet, H.J., Banerjee, A., McNish, S., Choi, Y., Torralba, M., Lucas, S., Chan, A., Shanmugam, V.K., Goluch, E.D.: Electrochemical detection of Pseudomonas in wound exudate samples from patients with chronic wounds. Wound Repair Regen. 24, 366–372 (2016)CrossRefGoogle Scholar
  40. 40.
    Bocher, S., Smyth, R., Kahlmeter, G., Kerremans, J., Vos, M.C., Skov, R.: Evaluation of four selective agars and two enrichment broths in screening for methicillin-resistant Staphylococcus aureus. J. Clin. Microbiol. 46, 3136–3138 (2008)CrossRefGoogle Scholar
  41. 41.
    Suaifan, G.A.R.Y., Alhogail, S., Zourob, M.: Rapid and low-cost biosensor for the detection of Staphylococcus aureus. Biosens. Bioelectron. 90, 230–237 (2017)CrossRefGoogle Scholar
  42. 42.
    Webster, T.A., Sismaet, H.J., Conte, J.L., Chan, I.P.J., Goluch, E.D.: Electrochemical detection of Pseudomonas aeruginosa in human fluid samples via pyocyanin. Biosens. Bioelectron. 60, 265–270 (2014)CrossRefGoogle Scholar
  43. 43.
    Chang, R., Subramanian, K., Wang, M., Webster, T.J.: Enhanced antibacterial properties of self-assembling peptide amphiphiles functionalized with heparin-binding cardin-motifs. ACS Appl. Mater. Interfaces 9, 22350–22360 (2017)CrossRefGoogle Scholar
  44. 44.
    Lam, S.J., O’Brien-Simpson, N.M., Pantarat, N., Sulistio, A., Wong, E.H.H., Chen, Y.-Y., Lenzo, J.C., Holden, J.A., Blencowe, A., Reynolds, E.C., Qiao, G.G.: Combating multidrug-resistant Gram-negative bacteria with structurally nanoengineered antimicrobial peptide polymers. Nat. Microbiol. 1, 16162 (2016)CrossRefGoogle Scholar
  45. 45.
    Geilich, B.M., Webster, T.J.: Reduced adhesion of Staphylococcus aureus to ZnO/PVC nanocomposites. Int. J. Nanomed. 8, 1177–1184 (2013)Google Scholar
  46. 46.
    Cai, W., Chen, X.: Nanoplatforms for targeted molecular imaging in living subjects. Small 3, 1840–1854 (2007)CrossRefGoogle Scholar
  47. 47.
    Palmal, S., Jana, N.R.: Gold nanoclusters with enhanced tunable fluorescence as bioimaging probes. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 6, 102–110 (2014)CrossRefGoogle Scholar
  48. 48.
    Ray, P.C., Khan, S.A., Singh, A.K., Senapati, D., Fan, Z.: Nanomaterials for targeted detection and photothermal killing of bacteria. Chem. Soc. Rev. 41, 3193–3209 (2012)CrossRefGoogle Scholar
  49. 49.
    Korzeniowska, B., Nooney, R., Wencel, D., McDonagh, C.: Silica nanoparticles for cell imaging and intracellular sensing. Nanotechnol. 24, 442002 (2013)CrossRefGoogle Scholar
  50. 50.
    Chang, W.-T., Chen, S.-J., Chang, C.-Y., Liu, Y.-H., Chen, C.-H., Yang, C.-H., Chou, L.C.-S., Chang, J.-C., Cheng, L.-C., Kuo, W.-S., Wang, J.-Y.: Effect of size-dependent photodestructive efficacy by gold nanomaterials with multiphoton laser. ACS Appl. Mater. Interfaces 7, 17318–17329 (2015)CrossRefGoogle Scholar
  51. 51.
    Sasidharan, A., Monteiro-Riviere, N.A.: Biomedical applications of gold nanomaterials: opportunities and challenges. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 7, 779–796 (2015)CrossRefGoogle Scholar
  52. 52.
    Springer, T., Ermini, M.L., Spackova, B., Jablonku, J., Homola, J.: Enhancing sensitivity of surface plasmon resonance biosensors by functionalized gold nanoparticles: size matters. Anal. Chem. 86, 10350–10356 (2014)CrossRefGoogle Scholar
  53. 53.
    Chiu, W.-J., Chen, W.-Y., Lai, H.-Z., Wu, C.-Y., Chiang, H.-L., Chen, Y.-C.: Dextran-encapsulated photoluminescent gold nanoclusters: synthesis and application. J. Nanopart. Res. 16, 1–11 (2014)CrossRefGoogle Scholar
  54. 54.
    Alsaiari, S.K., Hammami, M.A., Croissant, J.G., Omar, H.W., Neelakanda, P., Yapici, T., Peinemann, K.-V., Khashab, N.M.: Colloidal gold nanoclusters spiked silica fillers in mixed matrix coatings: simultaneous detection and inhibition of healthcare-associated infections. Adv. Healthcare Mater. 6, 1601135 (2017)CrossRefGoogle Scholar
  55. 55.
    Wang, S., Singh, A.K., Senapati, D., Neely, A., Yu, H., Ray, P.C.: Rapid colorimetric identification and targeted photothermal lysis of Salmonella bacteria by using bioconjugated oval-shaped gold nanoparticles. Chem. Eur. J. 16, 5600–5606 (2010)CrossRefGoogle Scholar
  56. 56.
    Li, X., Wei, J., Aifantis, K.E., Fan, Y., Feng, Q., Cui, F.-Z., Watari, F.: Current investigations into magnetic nanoparticles for biomedical applications. J. Biomed. Mater. Res. A 104, 1285–1296 (2016)CrossRefGoogle Scholar
  57. 57.
    Sanvicens, N., Pastells, C., Pascual, N., Marco, M.P.: Nanoparticle-based biosensors for detection of pathogenic bacteria. Trends Ana. Chem. 28, 1243–1252 (2009)CrossRefGoogle Scholar
  58. 58.
    Yang, X., Zhou, X., Zhu, M., Xing, D.: Sensitive detection of Listeria monocytogenes based on highly efficient enrichment with vancomycin-conjugated brush-like magnetic nano-platforms. Biosens. Bioelectron. 91, 238–245 (2017)CrossRefGoogle Scholar
  59. 59.
    Pramanik, A., Jones, S., Pedraza, F., Vangara, A., Sweet, C., Williams, M.S., Ruppa-Kasani, V., Risher, S.E., Sardar, D., Ray, P.C.: Fluorescent, magnetic multifunctional carbon dots for selective separation, identification, and eradication of drug-resistant superbugs. ACS Omega 2, 554–562 (2017)CrossRefGoogle Scholar
  60. 60.
    Liu, Z., Liu, J., Wang, R., Du, Y., Ren, J., Qu, X.: An efficient nano-based theranostic system for multi-modal imaging-guided photothermal sterilization in gastrointestinal tract. Biomaterials 56, 206–218 (2015)CrossRefGoogle Scholar
  61. 61.
    Li, Q., Wu, Y., Lu, H., Wu, X., Chen, S., Song, N., Yang, Y.-W., Gao, H.: Construction of supramolecular nanoassembly for responsive bacterial elimination and effective bacterial detection. ACS Appl. Mater. Interfaces 9, 10180–10189 (2017)CrossRefGoogle Scholar

Copyright information

©  Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  • Run Chang
    • 1
  • Ming Gao
    • 1
  • Linlin Sun
    • 1
  • Doudou Wang
    • 2
  • Zhe Liu
    • 3
    • 5
    • 4
    • 6
  • Thomas J. Webster
    • 1
    Email author
  1. 1.Department of Chemical EngineeringNortheastern UniversityBostonUSA
  2. 2.Wenzhou Medical UniversityWenzhouPeople’s Republic of China
  3. 3.Academy of Medical Engineering and Translational MedicineTianjin UniversityTianjinPeople’s Republic of China
  4. 4.The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical UniversityWenzhouPeople’s Republic of China
  5. 5.Wenzhou Institute of Biomaterials and Engineering, Chinese Academy of SciencesWenzhouPeople’s Republic of China
  6. 6.Wenzhou Institute of Biomaterials and EngineeringWenzhou Medical UniversityWenzhouPeople’s Republic of China

Personalised recommendations