Skip to main content

Outlook for Next-Generation Micro-/Nanoimaging Probes

  • Chapter
  • First Online:
Advances in Functional Micro-/Nanoimaging Probes

Part of the book series: Engineering Materials ((ENG.MAT.))

  • 380 Accesses

Abstract

Innovations for the next-generation of micro-/nanoimaging probes require multiple functions and roles to serve not only targeted imaging but also precision treatments. That is, the development of theranostic agents used for visualized medicine, image-guided therapy, or image-navigated surgery will dramatically extend their application scope, boost processing for clinical uses and bridge materials, and integrate bioengineering and medicine. This chapter provides an outlook for this bright future and focuses on several ever-growing subjects, including aggregation-induced emission probes, image-guided treatment technologies, and nanoimaging probes for bacteria detection.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Nagaya, T., Nakamura, Y.A., Choyke, P.L., Kobayashi, H.: Fluorescence-guided surgery. Front. Oncol. 22, 314 (2017)

    Article  Google Scholar 

  2. Ma, Y.Y., Jin, K.T., Wang, S.B., Wang, H.J., Tong, X.M., Huang, D.S., Mou, X.Z.: Molecular imaging of cancer with nanoparticle-based theranostic probes. Contrast Media Mol. Imaging (2017). https://doi.org/10.1155/2017/1026270

    Article  Google Scholar 

  3. Mi, P., Wang, F., Nishiyama, N., Cabral, H.: Molecular cancer imaging with polymeric nanoassemblies: from tumor detection to theranostics. Macromol. Biosci. (2017). https://doi.org/10.1002/mabi.201600305

    Article  Google Scholar 

  4. Onoshima, D., Yukawa, H., Baba, Y.: Multifunctional quantum dots-based cancer diagnostics and stem cell therapeutics for regenerative medicine. Adv. Drug Deliv. Rev. 95, 2–14 (2015)

    Article  CAS  Google Scholar 

  5. Bluemel, C., Matthies, P., Herrmann, K., Povoski, S.P.: 3D scintigraphic imaging and navigation in radioguided surgery: freehand SPECT technology and its clinical applications. Expert Rev. Med. Devices 13, 339–351 (2016)

    Article  CAS  Google Scholar 

  6. Harmsen, S., Teraphongphom, N., Tweedle, M.F., Basilion, J.P., Rosenthal, E.L.: Optical surgical navigation for precision tumor resections. Mol. Imaging Biol. 19, 357–362 (2017)

    Article  Google Scholar 

  7. Zheng, M., Yue, C., Ma, Y., Gong, P., Zhao, P., Zheng, C., Sheng, Z., Zhang, P., Wang, Z., Cai, L.: Single-step assembly of DOX/ICG loaded lipid-polymer nanoparticles for highly effective chemo-photothermal combination therapy. ACS Nano 7, 2056–2067 (2013)

    Article  CAS  Google Scholar 

  8. Liang, X., Gao, C., Cui, L., Wang, S., Wang, J., Dai, Z.: Self-assembly of an amphiphilic janus camptothecin-floxuridine conjugate into liposome-like nanoparticles for more efficacious combination chemotherapy in cancer. Adv. Mater. 29, 1703135 (2017)

    Article  CAS  Google Scholar 

  9. Mei, J., Leung, N.L., Kowk, R.T., Lam, J.W., Tang, B.Z.: Aggregation-induced emission: together we shine, united we soar! Chem. Rev. 115, 11718–11940 (2015)

    Article  CAS  Google Scholar 

  10. Gao, M., Tang, B.Z.: Fluorescent sensors based on aggregation-induced emission: recent advances and perspectives. ACS Sens. 2, 1382–1399 (2017)

    Article  CAS  Google Scholar 

  11. Venkatramaiah, N., Kumar, G.D., Chandrasekaran, Y., Ganduri, R., Patil, S.: Efficient blue and yellow organic light-emitting diodes enabled by aggregation-induced emission. ACS Appl. Mater. Interfaces. 10, 3838–3847 (2018)

    Article  CAS  Google Scholar 

  12. Sugiuchi, M., Maeba, J., Okubo, N., Iwamura, M., Nozaki, K., Konishi, K.: Aggregation-induced fluorescence-to-phosphorescence switching of molecular gold clusters. J. Am. Chem. Soc. 139, 17731–17734 (2017)

    Article  CAS  Google Scholar 

  13. Cheng, Y., Wang, J., Qiu, Z., Zheng, X., Leung, N.L.C., Lam, J.W.Y., Tang, B.Z.: Multiscale humidity visualization by environmentally sensitive fluorescent molecular rotors. Adv. Mater. 29, 1703900 (2017)

    Article  CAS  Google Scholar 

  14. Wang, Y., Chen, M., Alifu, N., Li, S., Qin, W., Qin, A., Tang, B.Z., Qian, J.: Aggregation-induced emission luminogen with deep-red emission for through-skull three-photon fluorescence imaging of mouse. ACS Nano 11, 10452–10461 (2017)

    Article  CAS  Google Scholar 

  15. Zhang, S., Qin, A.J., Sun, J.Z., Tang, B.Z.: Aggregation-induced luminescence mechanism. Prog. Chem. 23, 623–636 (2011)

    CAS  Google Scholar 

  16. Chen, J., Law, C.W., Lam, J.W.Y., Dong, Y., Lo, S.M.F., Williams, I.D., Zhu, D.B., Tang, B.Z.: Synthesis, light emission, nanoaggregation, and restricted intramolecular rotation of 1,1-substituted 2,3,4,5-tetraphenylsiloles. Chem. Mater. 15, 1535–1546 (2003)

    Article  CAS  Google Scholar 

  17. La, D.D., Bhosale, S.V., Jones, L.A., Bhosale, S.V.: Tetraphenylethylene-based AIE-active probes for sensing applications. ACS Appl. Mater. Interfaces (2017). https://doi.org/10.1021/acsami.7b12320

    Article  Google Scholar 

  18. Dong, Y., Lam, J.W.Y., Qin, A., Li, Z., Liu, J., Sun, J., Dong, Y., Tang, B.Z.: Endowing hexaphenylsilole with chemical sensory and biological probing properties by attaching amino pendants to the silolyl core. Chem. Phys. Lett. 446, 124–127 (2007)

    Article  CAS  Google Scholar 

  19. Jin, J., Chen, X., Liu, Y., Qin, A.J., Sun, J., Tang, B.Z.: Detection of ctDNA with water soluble tetraphenylethylene-based fluorescence probe. Acta Polym. Sin. 11, 1079–1085 (2011)

    Article  Google Scholar 

  20. Chan, C.P., Haeussler, M., Tang, B.Z., Dong, Y., Sin, K.K., Mak, W.C., Trau, D., Seydack, M., Renneberg, R.: Silole nanocrystals as novel biolabels. J. Immunol. Methods 295, 111–118 (2004)

    Article  CAS  Google Scholar 

  21. Han, T., Cathy, K.W.J., Jacky, W.Y.L., Tang, B.Z.: Polyynes with aggregation-induced emission characteristics: synthesis and their photonic properties. Acta Chim. Sin. 74, 877–884 (2016)

    Article  CAS  Google Scholar 

  22. Liu, Y., Wang, Z., Qin, W., Hu, Q., Tang, B.Z.: Fluorescent detection of Cu(II) by chitosan-based AIE bioconjugate. Chin. J. Polym. Sci. 35, 365–371 (2017)

    Article  CAS  Google Scholar 

  23. Kim, D.H., Chen, J., Omary, R.A., Larson, A.C.: MRI visible drug eluting magnetic microspheres for transcatheter intra-arterial delivery to liver tumors. Theranostics 5, 477–488 (2015)

    Article  CAS  Google Scholar 

  24. Yang, F., Liu, S., Liu, X., Liu, L., Luo, M., Qi, S., Xu, G., Qiao, S., Lv, X., Li, X., Fu, L., Luo, Q., Zhang, Z.: In vivo visualization of tumor antigen-containing microparticles generated in fluorescent-protein-elicited immunity. Theranostics 6, 1453–1466 (2016)

    Article  CAS  Google Scholar 

  25. Santos, M.A., Goertz, D.E., Hynynen, K.: Focused ultrasound hyperthermia mediated drug delivery using thermosensitive liposomes and visualized with in vivo two-photon microscopy. Theranostics 7, 2718–2731 (2017)

    Article  Google Scholar 

  26. Mikula, H., Stapleton, S., Kohler, R.H., Vinegoni, C., Weissleder, R.: Design and development of fluorescent vemurafenib analogs for in vivo imaging. Theranostics 7, 1257–1265 (2017)

    Article  CAS  Google Scholar 

  27. Sun, X., Gao, D., Gao, L., Zhang, C., Yu, X., Jia, B., Wang, F., Liu, Z.: Molecular imaging of tumor-infiltrating macrophages in a preclinical mouse model of breast cancer. Theranostics 5, 597–608 (2015)

    Article  CAS  Google Scholar 

  28. Lozano, N., Al-Ahmady, Z.S., Beziere, N.S., Ntziachristos, V., Kostarelos, K.: Monoclonal antibody-targeted PEGylated liposome-ICG encapsulating doxorubicin as a potential theranostic agent. Int. J. Pharm. 482, 2–10 (2015)

    Article  CAS  Google Scholar 

  29. Matsui, A., Tanaka, E., Choi, H.S., Winer, J.H., Kianzad, V., Gioux, S., Laurence, R.G., Frangioni, J.V.: Real-time intra-operative near-infrared fluorescence identification of the extrahepatic bile ducts using clinically available contrast agents. Surgery 148, 87–95 (2010)

    Article  Google Scholar 

  30. Liu, Y., Bauer, A.Q., Akers, W.J., Sudlow, G., Shen, D., Berezin, M.Y., Culver, J.P., Achilefu, S.: Hands-free, wireless goggles for near-infrared fluorescence and real-time image-guided surgery. Surgery 149, 689–698 (2011)

    Article  Google Scholar 

  31. Achilefu, S.: Rapid response activatable molecular probes for intraoperative optical image-guided tumor resection. Hepatology 56, 1170–1173 (2012)

    Article  CAS  Google Scholar 

  32. Urano, Y., Sakabe, M., Kosaka, N., Ogawa, M., Mitsunaga, M., Asanuma, D., Kamiya, M., Young, M.R., Nagano, T., Choyke, P.L., Kobayashi, H.: Rapid cancer detection by topically spraying a γ-glutamyltranspeptidase-activated fluorescent probe. Sci. Transl. Med. 3, 110ra119 (2011)

    Article  CAS  Google Scholar 

  33. Pignata, C., D’Angelo, D., Fea, E., Gilli, G.: A review on microbiological decontamination of fresh produce with nonthermal plasma. J. Appl. Microbiol. 122, 1438–1455 (2017)

    Article  CAS  Google Scholar 

  34. Centers for Disease Control and Prevention. https://www.cdc.gov/hai/. Accessed 27 May 2016

  35. Bolla, J.-M., Alibert-Franco, S., Handzlik, J., Chevalier, J., Mahamoud, A., Boyer, G., Kiec-Kononowicz, K., Pages, J.-M.: Strategies for bypassing the membrane barrier in multidrug resistant Gram-negative bacteria. FEBS Lett. 585, 1682–1690 (2011)

    Article  CAS  Google Scholar 

  36. Wu, M.-C., Deokar, A.R., Liao, J.-H., Shih, P.-Y., Ling, Y.-C.: Graphene-based photothermal agent for rapid and effective killing of bacteria. ACS Nano 7, 1281–1290 (2013)

    Article  CAS  Google Scholar 

  37. Review on Antimicrobial Resistance. https://amr-review.org/sites/default/files/AMRReviewPaper-Tacklingacrisisforthehealthandwealthofnations_1.pdf. Accessed Dec 2014

  38. Band, V.I., Crispell, E.K., Napier, B.A., Herrera, C.M., Tharp, G.K., Vavikolanu, K., Pohl, J., Read, T.D., Bosinger, S.E., Trent, M.S., Burd, E.M., Weiss, D.S.: Antibiotic failure mediated by a resistant subpopulation in Enterobacter cloacae. Nat. Microbiol. 1, 16053 (2016)

    Article  CAS  Google Scholar 

  39. Sismaet, H.J., Banerjee, A., McNish, S., Choi, Y., Torralba, M., Lucas, S., Chan, A., Shanmugam, V.K., Goluch, E.D.: Electrochemical detection of Pseudomonas in wound exudate samples from patients with chronic wounds. Wound Repair Regen. 24, 366–372 (2016)

    Article  Google Scholar 

  40. Bocher, S., Smyth, R., Kahlmeter, G., Kerremans, J., Vos, M.C., Skov, R.: Evaluation of four selective agars and two enrichment broths in screening for methicillin-resistant Staphylococcus aureus. J. Clin. Microbiol. 46, 3136–3138 (2008)

    Article  CAS  Google Scholar 

  41. Suaifan, G.A.R.Y., Alhogail, S., Zourob, M.: Rapid and low-cost biosensor for the detection of Staphylococcus aureus. Biosens. Bioelectron. 90, 230–237 (2017)

    Article  CAS  Google Scholar 

  42. Webster, T.A., Sismaet, H.J., Conte, J.L., Chan, I.P.J., Goluch, E.D.: Electrochemical detection of Pseudomonas aeruginosa in human fluid samples via pyocyanin. Biosens. Bioelectron. 60, 265–270 (2014)

    Article  CAS  Google Scholar 

  43. Chang, R., Subramanian, K., Wang, M., Webster, T.J.: Enhanced antibacterial properties of self-assembling peptide amphiphiles functionalized with heparin-binding cardin-motifs. ACS Appl. Mater. Interfaces 9, 22350–22360 (2017)

    Article  CAS  Google Scholar 

  44. Lam, S.J., O’Brien-Simpson, N.M., Pantarat, N., Sulistio, A., Wong, E.H.H., Chen, Y.-Y., Lenzo, J.C., Holden, J.A., Blencowe, A., Reynolds, E.C., Qiao, G.G.: Combating multidrug-resistant Gram-negative bacteria with structurally nanoengineered antimicrobial peptide polymers. Nat. Microbiol. 1, 16162 (2016)

    Article  CAS  Google Scholar 

  45. Geilich, B.M., Webster, T.J.: Reduced adhesion of Staphylococcus aureus to ZnO/PVC nanocomposites. Int. J. Nanomed. 8, 1177–1184 (2013)

    Google Scholar 

  46. Cai, W., Chen, X.: Nanoplatforms for targeted molecular imaging in living subjects. Small 3, 1840–1854 (2007)

    Article  CAS  Google Scholar 

  47. Palmal, S., Jana, N.R.: Gold nanoclusters with enhanced tunable fluorescence as bioimaging probes. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 6, 102–110 (2014)

    Article  CAS  Google Scholar 

  48. Ray, P.C., Khan, S.A., Singh, A.K., Senapati, D., Fan, Z.: Nanomaterials for targeted detection and photothermal killing of bacteria. Chem. Soc. Rev. 41, 3193–3209 (2012)

    Article  CAS  Google Scholar 

  49. Korzeniowska, B., Nooney, R., Wencel, D., McDonagh, C.: Silica nanoparticles for cell imaging and intracellular sensing. Nanotechnol. 24, 442002 (2013)

    Article  CAS  Google Scholar 

  50. Chang, W.-T., Chen, S.-J., Chang, C.-Y., Liu, Y.-H., Chen, C.-H., Yang, C.-H., Chou, L.C.-S., Chang, J.-C., Cheng, L.-C., Kuo, W.-S., Wang, J.-Y.: Effect of size-dependent photodestructive efficacy by gold nanomaterials with multiphoton laser. ACS Appl. Mater. Interfaces 7, 17318–17329 (2015)

    Article  CAS  Google Scholar 

  51. Sasidharan, A., Monteiro-Riviere, N.A.: Biomedical applications of gold nanomaterials: opportunities and challenges. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 7, 779–796 (2015)

    Article  CAS  Google Scholar 

  52. Springer, T., Ermini, M.L., Spackova, B., Jablonku, J., Homola, J.: Enhancing sensitivity of surface plasmon resonance biosensors by functionalized gold nanoparticles: size matters. Anal. Chem. 86, 10350–10356 (2014)

    Article  CAS  Google Scholar 

  53. Chiu, W.-J., Chen, W.-Y., Lai, H.-Z., Wu, C.-Y., Chiang, H.-L., Chen, Y.-C.: Dextran-encapsulated photoluminescent gold nanoclusters: synthesis and application. J. Nanopart. Res. 16, 1–11 (2014)

    Article  CAS  Google Scholar 

  54. Alsaiari, S.K., Hammami, M.A., Croissant, J.G., Omar, H.W., Neelakanda, P., Yapici, T., Peinemann, K.-V., Khashab, N.M.: Colloidal gold nanoclusters spiked silica fillers in mixed matrix coatings: simultaneous detection and inhibition of healthcare-associated infections. Adv. Healthcare Mater. 6, 1601135 (2017)

    Article  CAS  Google Scholar 

  55. Wang, S., Singh, A.K., Senapati, D., Neely, A., Yu, H., Ray, P.C.: Rapid colorimetric identification and targeted photothermal lysis of Salmonella bacteria by using bioconjugated oval-shaped gold nanoparticles. Chem. Eur. J. 16, 5600–5606 (2010)

    Article  CAS  Google Scholar 

  56. Li, X., Wei, J., Aifantis, K.E., Fan, Y., Feng, Q., Cui, F.-Z., Watari, F.: Current investigations into magnetic nanoparticles for biomedical applications. J. Biomed. Mater. Res. A 104, 1285–1296 (2016)

    Article  CAS  Google Scholar 

  57. Sanvicens, N., Pastells, C., Pascual, N., Marco, M.P.: Nanoparticle-based biosensors for detection of pathogenic bacteria. Trends Ana. Chem. 28, 1243–1252 (2009)

    Article  CAS  Google Scholar 

  58. Yang, X., Zhou, X., Zhu, M., Xing, D.: Sensitive detection of Listeria monocytogenes based on highly efficient enrichment with vancomycin-conjugated brush-like magnetic nano-platforms. Biosens. Bioelectron. 91, 238–245 (2017)

    Article  CAS  Google Scholar 

  59. Pramanik, A., Jones, S., Pedraza, F., Vangara, A., Sweet, C., Williams, M.S., Ruppa-Kasani, V., Risher, S.E., Sardar, D., Ray, P.C.: Fluorescent, magnetic multifunctional carbon dots for selective separation, identification, and eradication of drug-resistant superbugs. ACS Omega 2, 554–562 (2017)

    Article  CAS  Google Scholar 

  60. Liu, Z., Liu, J., Wang, R., Du, Y., Ren, J., Qu, X.: An efficient nano-based theranostic system for multi-modal imaging-guided photothermal sterilization in gastrointestinal tract. Biomaterials 56, 206–218 (2015)

    Article  CAS  Google Scholar 

  61. Li, Q., Wu, Y., Lu, H., Wu, X., Chen, S., Song, N., Yang, Y.-W., Gao, H.: Construction of supramolecular nanoassembly for responsive bacterial elimination and effective bacterial detection. ACS Appl. Mater. Interfaces 9, 10180–10189 (2017)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas J. Webster .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Chang, R., Gao, M., Sun, L., Wang, D., Liu, Z., Webster, T.J. (2018). Outlook for Next-Generation Micro-/Nanoimaging Probes. In: Liu, Z. (eds) Advances in Functional Micro-/Nanoimaging Probes. Engineering Materials. Springer, Singapore. https://doi.org/10.1007/978-981-10-4804-3_5

Download citation

Publish with us

Policies and ethics