Skip to main content

Translational Clinical Applications of Micro-/Nanoimaging Probes: Challenges and Perspectives

  • Chapter
  • First Online:
Advances in Functional Micro-/Nanoimaging Probes

Part of the book series: Engineering Materials ((ENG.MAT.))

  • 314 Accesses

Abstract

With the upgraded innovations in material science and translational medicine, micro-/nanoimaging probes show great promises for clinical translations to serve human healthcare. A number of micro-/nanoimaging probes have been approved for clinical imaging in US, CT, PET, SPECT, etc., and tremendous agents are at the status of clinical trials or under translations. This chapter focuses on the current commercially available imaging probes and their biomedical roles in disease diagnosis for patients. The potential challenges and future perspectives of imaging probes under evaluation are also briefly disclosed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kurup, N., Naik, P.: Microbubbles: a novel delivery system. Asian J. Pharm. Res. Healthc. 2, 228 (2013)

    Google Scholar 

  2. Hitesh, J., Parth, P., Suraj, F., Prachi, P., Shikha, Y.: Microbubbles-a potential ultrasound tool in drug delivery. Asian J. Pharm. Clin. Res. 4, 6–11 (2011)

    Google Scholar 

  3. Patel, R.M.: Microbubble: an ultrasound contrast agent in molecular imaging. Pharma Times 40, 15–19 (2008)

    Google Scholar 

  4. Palekar-Shanbhag, P., Chogale, M.M., Jog, S.V., Gaikwad, S.S.: Microbubbles and their applications in pharmaceutical targeting. Curr. Drug Deliv. 10, 363–373 (2013)

    Article  CAS  Google Scholar 

  5. Ittrich, H., Peldschus, K., Raabe, N., Kaul, M., Adam, G.: Superparamagnetic iron oxide nanoparticles in biomedicine: Applications and developments in diagnostics and therapy. RoFo: Fortschritte auf dem Gebiete der Roentgenstrahlen und der Nuklearmedizin 185, 1149–1166 (2013)

    Article  CAS  Google Scholar 

  6. Lee, N., Choi, S.H., Hyeon, T.: Nano-sized ct contrast agents. Adv. Mater. 25, 2641–2660 (2013)

    Article  CAS  Google Scholar 

  7. Bean, C.P., Livingston, J.D.: Superparamagnetism. J. Appl. Phys. 30, S120–S129 (1959)

    Article  Google Scholar 

  8. Schoonman, J.: Nanostructured materials in solid state ionics. Solid State Ionics 135, 5–19 (2000)

    Article  CAS  Google Scholar 

  9. Kemsheadl, J.T., Ugelstad, J.: Magnetic separation techniques: their application to medicine. Mol. Cell. Biochem. 67, 11–18 (1985)

    Article  Google Scholar 

  10. Hemmingsson, A., Carlsten, J., Ericsson, A., Klaveness, J., Sperber, G.O., Thuomas, K.A.: Relaxation enhancement of the dog liver and spleen by biodegradable superparamagnetic particles in proton magnetic resonance imaging. Acta Radiol. 28, 703–705 (1987)

    Article  CAS  Google Scholar 

  11. Josephson, L., Lewis, J., Jacobs, P., Hahn, P.F., Stark, D.D.: The Effects of Iron Oxides on Proton Relaxivity. Prentice-Hall (1988)

    Google Scholar 

  12. Rubin, G.D., Rofsky, N.M.: CT and MR Angiography: Comprehensive Vascular Assessment. Lippincott Williams & Wilkins (2008)

    Google Scholar 

  13. Molinari, F., Fink, C., Risse, F., Tuengerthal, S., Bonomo, L., Kauczor, H.U.: Assessment of differential pulmonary blood flow using perfusion magnetic resonance imaging: comparison with radionuclide perfusion scintigraphy. Invest. Radiol. 41, 624 (2006)

    Article  Google Scholar 

  14. Ohno, Y., Hatabu, H., Higashino, T., Takenaka, D., Watanabe, H., Nishimura, Y., Yoshimura, M., Sugimura, K.: Dynamic perfusion MRI versus perfusion scintigraphy: prediction of postoperative lung function in patients with lung cancer. Am. J. Roentgenol. 182, 73–78 (2004)

    Article  Google Scholar 

  15. Iwasawa, T., Saito, K., Ogawa, N., Ishiwa, N., Kurihara, H.: Prediction of postoperative pulmonary function using perfusion magnetic resonance imaging of the lung. J. Magn. Reson. Imaging 15, 685–692 (2002)

    Article  Google Scholar 

  16. Weinsaft, J.W., Klem, I., Judd, R.M.: MRI for the assessment of myocardial viability. Cardiol. Clin. 25, 505–525 (2007)

    Article  Google Scholar 

  17. Sakuma, H.: Magnetic resonance imaging for ischemic heart disease. J. Magn. Reson. Imaging 26, 3–13 (2007)

    Article  Google Scholar 

  18. Saslow, D., Harms, S., Leach, M.O., Morris, E., Pisano, E., Sener, S.: American cancer society guidelines for breast screening with MRI as an adjunct to mammography. CA-A Cancer J. Clin. 57, 75 (2007)

    Article  Google Scholar 

  19. Moon, M., Cornfeld, D., Weinreb, J.: Dynamic contrast-enhanced breast MR imaging. Magn. Reson. Imaging Clin. N. Am. 17, 351–362 (2009)

    Article  Google Scholar 

  20. Fidler, J.: MR imaging of the small bowel. Radiographics 29, 1811–1825 (2009)

    Article  Google Scholar 

  21. Schneider, G., Reimer, P., Mamann, A., Kirchin, M.A., Morana, G., Grazioli, L.: Contrast agents in abdominal imaging: current and future directions. Topics Magn. Reson. Imaging 16, 107–124 (2005)

    Article  Google Scholar 

  22. Hricak, H., Chen, M., Coakley, F.V., Kinkel, K., Yu, K.K., Sica, G., Bacchetti, P., Powell, C.B.: Complex adnexal masses: detection and characterization with MR imaging–multivariate analysis. Radiology 214, 39 (2000)

    Article  CAS  Google Scholar 

  23. Whitten, C.R., Desouza, N.M.: Magnetic resonance imaging of uterine malignancies. Topics Magn. Reson. Imaging. 17, 365–377 (2006)

    Article  Google Scholar 

  24. Manfredi, R., Gui, B., Maresca, G., Fanfani, F., Bonomo, L.: Endometrial cancer: magnetic resonance imaging. Abdom. Imaging 30, 626–636 (2005)

    Article  CAS  Google Scholar 

  25. Sohaib, S.A., Sahdev, A., Van, T.P., Jacobs, I.J., Reznek, R.H.: Characterization of adnexal mass lesions on MR imaging. Am. J. Roentgenol. 180, 1297–1304 (2003)

    Article  Google Scholar 

  26. Calero, M., Gutierrez, L., Salas, G., Luengo, Y., Lazaro, A., Acedo, P., Morales, M.P., Miranda, R., Villanueva, A.: Efficient and safe internalization of magnetic iron oxide nanoparticles: Two fundamental requirements for biomedical applications. Nanomed. Nanotech. Biol. Med. 10, 733–743 (2014)

    Article  CAS  Google Scholar 

  27. Weissleder, R., Elizondo, G., Wittenberg, J., Lee, A.S., Josephson, L., Brady, T.J.: Ultrasmall superparamagnetic iron oxide: an intravenous contrast agent for assessing lymph nodes with MR imaging. Radiology 175, 494–498 (1990)

    Article  CAS  Google Scholar 

  28. Seneterre, E., Weissleder, R., Jaramillo, D., Reimer, P., Lee, A.S., Brady, T.J., Wittenberg, J.: Bone marrow: ultrasmall superparamagnetic iron oxide for MR imaging. Radiology 179, 529 (1991)

    Article  CAS  Google Scholar 

  29. Schmitz, S.A., Winterhalter, S., Schiffler, S., Gust, R., Wagner, S., Kresse, M., Coupland, S.E., Semmler, W., Wolf, K.J.: Uspio-enhanced direct MR imaging of thrombus: preclinical evaluation in rabbits. Radiology 221, 237 (2001)

    Article  CAS  Google Scholar 

  30. Schmitz, S.A., Coupland, S.E., Gust, R., Winterhalter, S., Wagner, S., Kresse, M., Semmler, W., Wolf, K.J.: Superparamagnetic iron oxide-enhanced MRI of atherosclerotic plaques in watanabe hereditable hyperlipidemic rabbits. Invest. Radiol. 35, 460–471 (2000)

    Article  CAS  Google Scholar 

  31. Hahn, P.F., Stark, D.D., Weissleder, R., Elizondo, G., Saini, S., Ferrucci, J.T.: Clinical application of superparamagnetic iron oxide to MR imaging of tissue perfusion in vascular liver tumors. Radiology 174, 361–366 (1990)

    Article  CAS  Google Scholar 

  32. Kent, T.A., Quast, M.J., Kaplan, B.J., Lifsey, R.S., Eisenberg, H.M.: Assessment of a superparamagnetic iron oxide (AMI-25) as a brain contrast agent. Magn. Reson. Med. 13, 434–443 (1990)

    Article  CAS  Google Scholar 

  33. Vellinga, M.M., Oude, E., Seewann, A., Pouwels, P., Wattjes, P., van der Pol, S.M., Pering, C., Polman, C., de Vries, H., Geurts, J., Barkhof, F.: Pluriformity of inflammation in multiple sclerosis shown by ultra-small iron oxide particle enhancement. Brain 131, 800–807 (2008)

    Article  Google Scholar 

  34. Ferrucci, J.T., Stark, D.D.: Iron oxide-enhanced mr imaging of the liver and spleen: review of the first 5 years. Am. J. Roentgenol. 155, 943–950 (1990)

    Article  CAS  Google Scholar 

  35. Imai, Y., Murakami, T., Yoshida, S., Nishikawa, M., Ohsawa, M., Tokunaga, K., Murata, M., Shibata, K., Zushi, S., Kurokawa, M.: Superparamagnetic iron oxide–enhanced magnetic resonance images of hepatocellular carcinoma: correlation with histological grading. Hepatology 32, 205–212 (2000)

    Article  CAS  Google Scholar 

  36. Pultrum, B.B., Ej, V.D.J., van Westreenen, H.L., van Dullemen, H.M., Kappert, P., Groen, H., Sietsma, J., Oudkerk, M., Plukker, J.T., van Dam, G.M.: Detection of lymph node metastases with ultrasmall superparamagnetic iron oxide (USPIO)-enhanced magnetic resonance imaging in oesophageal cancer: a feasibility study. Cancer Imaging 9, 19–28 (2009)

    Article  CAS  Google Scholar 

  37. Nguyen, B.C., Stanford, W., Thompson, B.H., Rossi, N.P., Kernstine, K.H., Kern, J.A., Robinson, R.A., Amorosa, J.K., Mammone, J.F., Outwater, E.K.: Multicenter clinical trial of ultrasmall superparamagnetic iron oxide in the evaluation of mediastinal lymph nodes in patients with primary lung carcinoma. J. Magn. Reson. Imaging 10, 468–473 (1999)

    Article  CAS  Google Scholar 

  38. Tokuhara, T., Tanigawa, N., Matsuki, M., Nomura, E., Mabuchi, H., Lee, S.W., Tatsumi, Y., Nishimura, H., Yoshinaka, R., Kurisu, Y.: Evaluation of lymph node metastases in gastric cancer using magnetic resonance imaging with ultrasmall superparamagnetic iron oxide (USPIO): diagnostic performance in post-contrast images using new diagnostic criteria. Gastric Cancer 11, 194–200 (2008)

    Article  Google Scholar 

  39. Ruehm, S.G., Corot, C., Vogt, P., Kolb, S., Debatin, J.F.: Magnetic resonance imaging of atherosclerotic plaque with ultrasmall superparamagnetic particles of iron oxide in hyperlipidemic rabbits. Circulation 103, 415 (2001)

    Article  CAS  Google Scholar 

  40. Kooi, M.E., Cappendijk, V.C., Cleutjens, K.B., Kessels, A.G., Kitslaar, P.J., Borgers, M., Frederik, P.M., Daemen, M.J., van Engelshoven, J.M.: Accumulation of ultrasmall superparamagnetic particles of iron oxide in human atherosclerotic plaques can be detected by in vivo magnetic resonance imaging. Circulation 107, 2453–2458 (2003)

    Article  CAS  Google Scholar 

  41. Hahn, P.F., Stark, D.D., Ferrucci, J.T.: Accumulation of iron oxide particles around liver metastases during MR imaging. Gastrointest. Radiol. 17, 173–174 (1992)

    Article  CAS  Google Scholar 

  42. Moore, A., Marecos, E., Bogdanov Jr., A., Weissleder, R.: Tumoral distribution of long-circulating dextran-coated iron oxide nanoparticles in a rodent model. Radiology 214, 568–574 (2000)

    Article  CAS  Google Scholar 

  43. Saleh, A., Schroeter, M., Jonkmanns, C., Hartung, H.P., Modder, U., Jander, S.: In vivo MRI of brain inflammation in human ischaemic stroke. Brain 127, 1670–1677 (2004)

    Article  Google Scholar 

  44. Enochs, W.S., Harsh, G., Hochberg, F., Weissleder, R.: Improved delineation of human brain tumors on mr images using a long-circulating, superparamagnetic iron oxide agent. J. Magn. Reson. Imaging 9, 228–232 (1999)

    Article  CAS  Google Scholar 

  45. Eniola, A.O., Willcox, P.J., Hammer, D.A.: Interplay between rolling and firm adhesion elucidated with a cell-free system engineered with two distinct receptor-ligand pairs. Biophys. J. 85, 2720–2731 (2003)

    Article  CAS  Google Scholar 

  46. Liu, Y., Miyoshi, H., Nakamura, M.: Encapsulated ultrasound microbubbles: therapeutic application in drug/gene delivery. J. Control. Release 114, 89–99 (2006)

    Article  CAS  Google Scholar 

  47. Amberg, J.R., Thompson, W.M., Golberger, L., Williamson, S., Alexander, R., Bates, M.: Factors in the intestinal absorption of oral cholecystopaques. Invest. Radiol. 15, S136 (1980)

    Article  CAS  Google Scholar 

  48. Berk, R.N., Loeb, P.M.: Pharmacology and physiology of the biliary radiographic contrast materials. Semin. Roentgenol. 11, 147–156 (1976)

    Article  CAS  Google Scholar 

  49. Berk, R.N., Loeb, P.M., Cobo-Frenkel, A., Barnhart, J.L.: The biliary and urinary excretion of sodium tyropanoate and sodium ipodate in dogs: Pharmacokinetics, influence of bile salts and choleretic effects with comparison to iopanoic acid. Invest. Radiol. 12, 85 (1977)

    Article  CAS  Google Scholar 

  50. Janes, J.O., Dietschy, J.M., Berk, R.N., Loeb, P.M., Barnhart, J.L.: Determinants of the rate of intestinal absorption of oral cholecystographic contrast agents in the dog jejunum. Gastroenterology 76, 970–977 (1979)

    CAS  Google Scholar 

  51. Chilton, C., Swanson, D., Chilton, H., Thrall, J.: Pharmaceuticals in Medical Imaging. Macmillan Publishing Co. (1990)

    Google Scholar 

  52. Sovak, M., Hoey, G.B., Smith, K.R.: Radiocontrast agents. Handb. Exp. Pharmacol. 73, 1–125 (1984)

    Article  CAS  Google Scholar 

  53. Dawson, P., Cosgrove, D.O., Grainger, R.G.: Textbook of Contrast Media. Isis Medical Media, Calif (1999)

    Google Scholar 

  54. Siegel, R.L., Miller, K.D., Jemal, A.: Cancer statistics, 2015. CA Cancer J. Clin. 65, 5–29 (2015)

    Article  Google Scholar 

  55. Talbot, J.N., Fartoux, L., Balogova, S., Nataf, V., Kerrou, K., Gutman, F., Huchet, V., Ancel, D., Grange, J.D., Rosmorduc, O.: Detection of hepatocellular carcinoma with PET/CT: a prospective comparison of 18F-fluorocholine and 18F-FDG in patients with cirrhosis or chronic liver disease. J. Nucl. Med. 51, 1699–1706 (2010)

    Article  Google Scholar 

  56. How, K.N., Dugue, A.E., Sevin, E., Allouache, N., Lesaunier, F., Joly, F., Aide, N.: Pairwise comparison of 18F-FDG and 18F-FCH PET/CT in prostate cancer patients with rising PSA and known or suspected second malignancy. Nucl. Med. Commun. 37, 348–355 (2016)

    Article  CAS  Google Scholar 

  57. Garcia, V., Jimenez, A., Villena, M., Jimenez, L., Borras, M.: 18F-fluorocholine PET/CT, brain MRI, and 5-aminolevulinic acid for the assessment of tumor resection in high-grade glioma. Clin. Nucl. Med. 42, e300–e303 (2017)

    Article  Google Scholar 

  58. Balogova, S., Huchet, V., Kerrou, K., Nataf, V., Gutman, F., Antoine, M., Ruppert, A., Prignon, A., Lavolee, A., Montravers, F., Mayaud, C., Cadranel, J., Talbot, J.: Detection of bronchioloalveolar cancer by means of PET/CT and 18F-fluorocholine, and comparison with 18F-fluorodeoxyglucose. Nucl. Med. Commun. 31, 389–397 (2010)

    CAS  Google Scholar 

  59. Are, C., Meyer, B., Stack, A., Ahmad, H., Smith, L., Qian, B., Song, T., Chowdhury, S.: Global trends in the burden of liver cancer. J. Surg. Oncol. 115, 591–602 (2017)

    Article  Google Scholar 

  60. Kubota, R., Kubota, K., Yamada, S., Tada, M., Takahashi, T., Iwata, R., Tamahashi, N.: Methionine uptake by tumor tissue: a microautoradiographic comparison with FDG. J. Nucl. Med. 36, 484–492 (1995)

    CAS  Google Scholar 

  61. Buroni, F.E., Pasi, F., Persico, M.G., Lodola, L., Aprile, C., Nano, R.: Evidence of 18F-FCH uptake in human T98G glioblastoma cells. Anticancer Res. 35, 6439–6443 (2015)

    CAS  Google Scholar 

  62. Bejanin, A., Schonhaut, D.R., La Joie, R., Kramer, J.H., Baker, S.L., Sosa, N., Ayakta, N., Cantwell, A., Janabi, M., Lauriola, M., O’Neil, J.P., Gorno-Tempini, M.L., Miller, Z.A., Rosen, H.J., Miller, B.L., Jagust, W.J., Rabinovici, G.D.: Tau pathology and neurodegeneration contribute to cognitive impairment in alzheimer’s disease. Brain 140, 3286–3300 (2017)

    Article  Google Scholar 

  63. Kang, J.M., Lee, S.Y., Seo, S., Jeong, H.J., Woo, S.H., Lee, H., Lee, Y.B., Yeon, B.K., Shin, D.H., Park, K.H., Kang, H., Okamura, N., Furumoto, S., Yanai, K., Villemagne, V.L., Seong, J.K., Na, D.L., Ido, T., Cho, J., Lee, K.M., Noh, Y.: Tau positron emission tomography using [(18)F]THK5351 and cerebral glucose hypometabolism in alzheimer’s disease. Neurobiol. Aging 59, 210–219 (2017)

    Article  CAS  Google Scholar 

  64. Ueno, A., Masugi, Y., Yamazaki, K., Komuta, M., Effendi, K., Tanami, Y., Tsujikawa, H., Tanimoto, A., Okuda, S., Itano, O., Kitagawa, Y., Kuribayashi, S., Sakamoto, M.: OATP1B3 expression is strongly associated with Wnt/beta-catenin signalling and represents the transporter of gadoxetic acid in hepatocellular carcinoma. J. Hepatol. 61, 1080–1087 (2014)

    Article  CAS  Google Scholar 

  65. Junking, M., Grainok, J., Thepmalee, C., Wongkham, S., Yenchitsomanus, P.T.: Enhanced cytotoxic activity of effector T-cells against cholangiocarcinoma by dendritic cells pulsed with pooled mRNA. Tumour Biol. 39, 1010428317733367 (2017)

    Article  Google Scholar 

  66. Piert, M., Montgomery, J., Kunju, L.P., Siddiqui, J., Rogers, V., Rajendiran, T., Johnson, T.D., Shao, X., Davenport, M.S.: 18F-choline PET/MRI: The additional value of pet for MRI-guided transrectal prostate biopsies. J. Nucl. Med. 57, 1065–1070 (2016)

    Article  CAS  Google Scholar 

  67. Tardy, I., Pochon, S., Theraulaz, M., Emmel, P., Passantino, L., Tranquart, F., Schneider, M.: Ultrasound molecular imaging of VEGFR2 in a rat prostate tumor model using BR55. Invest. Radiol. 45, 573–578 (2010)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhe Liu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Wu, S. et al. (2018). Translational Clinical Applications of Micro-/Nanoimaging Probes: Challenges and Perspectives. In: Liu, Z. (eds) Advances in Functional Micro-/Nanoimaging Probes. Engineering Materials. Springer, Singapore. https://doi.org/10.1007/978-981-10-4804-3_4

Download citation

Publish with us

Policies and ethics