Translational Clinical Applications of Micro-/Nanoimaging Probes: Challenges and Perspectives

  • Senmin Wu
  • Hui Zhu
  • Jianle Huang
  • Kai Chen
  • Yan Yang
  • Chunpeng Zou
  • Zhe LiuEmail author
Part of the Engineering Materials book series (ENG.MAT.)


With the upgraded innovations in material science and translational medicine, micro-/nanoimaging probes show great promises for clinical translations to serve human healthcare. A number of micro-/nanoimaging probes have been approved for clinical imaging in US, CT, PET, SPECT, etc., and tremendous agents are at the status of clinical trials or under translations. This chapter focuses on the current commercially available imaging probes and their biomedical roles in disease diagnosis for patients. The potential challenges and future perspectives of imaging probes under evaluation are also briefly disclosed.


  1. 1.
    Kurup, N., Naik, P.: Microbubbles: a novel delivery system. Asian J. Pharm. Res. Healthc. 2, 228 (2013)Google Scholar
  2. 2.
    Hitesh, J., Parth, P., Suraj, F., Prachi, P., Shikha, Y.: Microbubbles-a potential ultrasound tool in drug delivery. Asian J. Pharm. Clin. Res. 4, 6–11 (2011)Google Scholar
  3. 3.
    Patel, R.M.: Microbubble: an ultrasound contrast agent in molecular imaging. Pharma Times 40, 15–19 (2008)Google Scholar
  4. 4.
    Palekar-Shanbhag, P., Chogale, M.M., Jog, S.V., Gaikwad, S.S.: Microbubbles and their applications in pharmaceutical targeting. Curr. Drug Deliv. 10, 363–373 (2013)CrossRefGoogle Scholar
  5. 5.
    Ittrich, H., Peldschus, K., Raabe, N., Kaul, M., Adam, G.: Superparamagnetic iron oxide nanoparticles in biomedicine: Applications and developments in diagnostics and therapy. RoFo: Fortschritte auf dem Gebiete der Roentgenstrahlen und der Nuklearmedizin 185, 1149–1166 (2013)CrossRefGoogle Scholar
  6. 6.
    Lee, N., Choi, S.H., Hyeon, T.: Nano-sized ct contrast agents. Adv. Mater. 25, 2641–2660 (2013)CrossRefGoogle Scholar
  7. 7.
    Bean, C.P., Livingston, J.D.: Superparamagnetism. J. Appl. Phys. 30, S120–S129 (1959)CrossRefGoogle Scholar
  8. 8.
    Schoonman, J.: Nanostructured materials in solid state ionics. Solid State Ionics 135, 5–19 (2000)CrossRefGoogle Scholar
  9. 9.
    Kemsheadl, J.T., Ugelstad, J.: Magnetic separation techniques: their application to medicine. Mol. Cell. Biochem. 67, 11–18 (1985)CrossRefGoogle Scholar
  10. 10.
    Hemmingsson, A., Carlsten, J., Ericsson, A., Klaveness, J., Sperber, G.O., Thuomas, K.A.: Relaxation enhancement of the dog liver and spleen by biodegradable superparamagnetic particles in proton magnetic resonance imaging. Acta Radiol. 28, 703–705 (1987)CrossRefGoogle Scholar
  11. 11.
    Josephson, L., Lewis, J., Jacobs, P., Hahn, P.F., Stark, D.D.: The Effects of Iron Oxides on Proton Relaxivity. Prentice-Hall (1988)Google Scholar
  12. 12.
    Rubin, G.D., Rofsky, N.M.: CT and MR Angiography: Comprehensive Vascular Assessment. Lippincott Williams & Wilkins (2008)Google Scholar
  13. 13.
    Molinari, F., Fink, C., Risse, F., Tuengerthal, S., Bonomo, L., Kauczor, H.U.: Assessment of differential pulmonary blood flow using perfusion magnetic resonance imaging: comparison with radionuclide perfusion scintigraphy. Invest. Radiol. 41, 624 (2006)CrossRefGoogle Scholar
  14. 14.
    Ohno, Y., Hatabu, H., Higashino, T., Takenaka, D., Watanabe, H., Nishimura, Y., Yoshimura, M., Sugimura, K.: Dynamic perfusion MRI versus perfusion scintigraphy: prediction of postoperative lung function in patients with lung cancer. Am. J. Roentgenol. 182, 73–78 (2004)CrossRefGoogle Scholar
  15. 15.
    Iwasawa, T., Saito, K., Ogawa, N., Ishiwa, N., Kurihara, H.: Prediction of postoperative pulmonary function using perfusion magnetic resonance imaging of the lung. J. Magn. Reson. Imaging 15, 685–692 (2002)CrossRefGoogle Scholar
  16. 16.
    Weinsaft, J.W., Klem, I., Judd, R.M.: MRI for the assessment of myocardial viability. Cardiol. Clin. 25, 505–525 (2007)CrossRefGoogle Scholar
  17. 17.
    Sakuma, H.: Magnetic resonance imaging for ischemic heart disease. J. Magn. Reson. Imaging 26, 3–13 (2007)CrossRefGoogle Scholar
  18. 18.
    Saslow, D., Harms, S., Leach, M.O., Morris, E., Pisano, E., Sener, S.: American cancer society guidelines for breast screening with MRI as an adjunct to mammography. CA-A Cancer J. Clin. 57, 75 (2007)CrossRefGoogle Scholar
  19. 19.
    Moon, M., Cornfeld, D., Weinreb, J.: Dynamic contrast-enhanced breast MR imaging. Magn. Reson. Imaging Clin. N. Am. 17, 351–362 (2009)CrossRefGoogle Scholar
  20. 20.
    Fidler, J.: MR imaging of the small bowel. Radiographics 29, 1811–1825 (2009)CrossRefGoogle Scholar
  21. 21.
    Schneider, G., Reimer, P., Mamann, A., Kirchin, M.A., Morana, G., Grazioli, L.: Contrast agents in abdominal imaging: current and future directions. Topics Magn. Reson. Imaging 16, 107–124 (2005)CrossRefGoogle Scholar
  22. 22.
    Hricak, H., Chen, M., Coakley, F.V., Kinkel, K., Yu, K.K., Sica, G., Bacchetti, P., Powell, C.B.: Complex adnexal masses: detection and characterization with MR imaging–multivariate analysis. Radiology 214, 39 (2000)CrossRefGoogle Scholar
  23. 23.
    Whitten, C.R., Desouza, N.M.: Magnetic resonance imaging of uterine malignancies. Topics Magn. Reson. Imaging. 17, 365–377 (2006)CrossRefGoogle Scholar
  24. 24.
    Manfredi, R., Gui, B., Maresca, G., Fanfani, F., Bonomo, L.: Endometrial cancer: magnetic resonance imaging. Abdom. Imaging 30, 626–636 (2005)CrossRefGoogle Scholar
  25. 25.
    Sohaib, S.A., Sahdev, A., Van, T.P., Jacobs, I.J., Reznek, R.H.: Characterization of adnexal mass lesions on MR imaging. Am. J. Roentgenol. 180, 1297–1304 (2003)CrossRefGoogle Scholar
  26. 26.
    Calero, M., Gutierrez, L., Salas, G., Luengo, Y., Lazaro, A., Acedo, P., Morales, M.P., Miranda, R., Villanueva, A.: Efficient and safe internalization of magnetic iron oxide nanoparticles: Two fundamental requirements for biomedical applications. Nanomed. Nanotech. Biol. Med. 10, 733–743 (2014)CrossRefGoogle Scholar
  27. 27.
    Weissleder, R., Elizondo, G., Wittenberg, J., Lee, A.S., Josephson, L., Brady, T.J.: Ultrasmall superparamagnetic iron oxide: an intravenous contrast agent for assessing lymph nodes with MR imaging. Radiology 175, 494–498 (1990)CrossRefGoogle Scholar
  28. 28.
    Seneterre, E., Weissleder, R., Jaramillo, D., Reimer, P., Lee, A.S., Brady, T.J., Wittenberg, J.: Bone marrow: ultrasmall superparamagnetic iron oxide for MR imaging. Radiology 179, 529 (1991)CrossRefGoogle Scholar
  29. 29.
    Schmitz, S.A., Winterhalter, S., Schiffler, S., Gust, R., Wagner, S., Kresse, M., Coupland, S.E., Semmler, W., Wolf, K.J.: Uspio-enhanced direct MR imaging of thrombus: preclinical evaluation in rabbits. Radiology 221, 237 (2001)CrossRefGoogle Scholar
  30. 30.
    Schmitz, S.A., Coupland, S.E., Gust, R., Winterhalter, S., Wagner, S., Kresse, M., Semmler, W., Wolf, K.J.: Superparamagnetic iron oxide-enhanced MRI of atherosclerotic plaques in watanabe hereditable hyperlipidemic rabbits. Invest. Radiol. 35, 460–471 (2000)CrossRefGoogle Scholar
  31. 31.
    Hahn, P.F., Stark, D.D., Weissleder, R., Elizondo, G., Saini, S., Ferrucci, J.T.: Clinical application of superparamagnetic iron oxide to MR imaging of tissue perfusion in vascular liver tumors. Radiology 174, 361–366 (1990)CrossRefGoogle Scholar
  32. 32.
    Kent, T.A., Quast, M.J., Kaplan, B.J., Lifsey, R.S., Eisenberg, H.M.: Assessment of a superparamagnetic iron oxide (AMI-25) as a brain contrast agent. Magn. Reson. Med. 13, 434–443 (1990)CrossRefGoogle Scholar
  33. 33.
    Vellinga, M.M., Oude, E., Seewann, A., Pouwels, P., Wattjes, P., van der Pol, S.M., Pering, C., Polman, C., de Vries, H., Geurts, J., Barkhof, F.: Pluriformity of inflammation in multiple sclerosis shown by ultra-small iron oxide particle enhancement. Brain 131, 800–807 (2008)CrossRefGoogle Scholar
  34. 34.
    Ferrucci, J.T., Stark, D.D.: Iron oxide-enhanced mr imaging of the liver and spleen: review of the first 5 years. Am. J. Roentgenol. 155, 943–950 (1990)CrossRefGoogle Scholar
  35. 35.
    Imai, Y., Murakami, T., Yoshida, S., Nishikawa, M., Ohsawa, M., Tokunaga, K., Murata, M., Shibata, K., Zushi, S., Kurokawa, M.: Superparamagnetic iron oxide–enhanced magnetic resonance images of hepatocellular carcinoma: correlation with histological grading. Hepatology 32, 205–212 (2000)CrossRefGoogle Scholar
  36. 36.
    Pultrum, B.B., Ej, V.D.J., van Westreenen, H.L., van Dullemen, H.M., Kappert, P., Groen, H., Sietsma, J., Oudkerk, M., Plukker, J.T., van Dam, G.M.: Detection of lymph node metastases with ultrasmall superparamagnetic iron oxide (USPIO)-enhanced magnetic resonance imaging in oesophageal cancer: a feasibility study. Cancer Imaging 9, 19–28 (2009)CrossRefGoogle Scholar
  37. 37.
    Nguyen, B.C., Stanford, W., Thompson, B.H., Rossi, N.P., Kernstine, K.H., Kern, J.A., Robinson, R.A., Amorosa, J.K., Mammone, J.F., Outwater, E.K.: Multicenter clinical trial of ultrasmall superparamagnetic iron oxide in the evaluation of mediastinal lymph nodes in patients with primary lung carcinoma. J. Magn. Reson. Imaging 10, 468–473 (1999)CrossRefGoogle Scholar
  38. 38.
    Tokuhara, T., Tanigawa, N., Matsuki, M., Nomura, E., Mabuchi, H., Lee, S.W., Tatsumi, Y., Nishimura, H., Yoshinaka, R., Kurisu, Y.: Evaluation of lymph node metastases in gastric cancer using magnetic resonance imaging with ultrasmall superparamagnetic iron oxide (USPIO): diagnostic performance in post-contrast images using new diagnostic criteria. Gastric Cancer 11, 194–200 (2008)CrossRefGoogle Scholar
  39. 39.
    Ruehm, S.G., Corot, C., Vogt, P., Kolb, S., Debatin, J.F.: Magnetic resonance imaging of atherosclerotic plaque with ultrasmall superparamagnetic particles of iron oxide in hyperlipidemic rabbits. Circulation 103, 415 (2001)CrossRefGoogle Scholar
  40. 40.
    Kooi, M.E., Cappendijk, V.C., Cleutjens, K.B., Kessels, A.G., Kitslaar, P.J., Borgers, M., Frederik, P.M., Daemen, M.J., van Engelshoven, J.M.: Accumulation of ultrasmall superparamagnetic particles of iron oxide in human atherosclerotic plaques can be detected by in vivo magnetic resonance imaging. Circulation 107, 2453–2458 (2003)CrossRefGoogle Scholar
  41. 41.
    Hahn, P.F., Stark, D.D., Ferrucci, J.T.: Accumulation of iron oxide particles around liver metastases during MR imaging. Gastrointest. Radiol. 17, 173–174 (1992)CrossRefGoogle Scholar
  42. 42.
    Moore, A., Marecos, E., Bogdanov Jr., A., Weissleder, R.: Tumoral distribution of long-circulating dextran-coated iron oxide nanoparticles in a rodent model. Radiology 214, 568–574 (2000)CrossRefGoogle Scholar
  43. 43.
    Saleh, A., Schroeter, M., Jonkmanns, C., Hartung, H.P., Modder, U., Jander, S.: In vivo MRI of brain inflammation in human ischaemic stroke. Brain 127, 1670–1677 (2004)CrossRefGoogle Scholar
  44. 44.
    Enochs, W.S., Harsh, G., Hochberg, F., Weissleder, R.: Improved delineation of human brain tumors on mr images using a long-circulating, superparamagnetic iron oxide agent. J. Magn. Reson. Imaging 9, 228–232 (1999)CrossRefGoogle Scholar
  45. 45.
    Eniola, A.O., Willcox, P.J., Hammer, D.A.: Interplay between rolling and firm adhesion elucidated with a cell-free system engineered with two distinct receptor-ligand pairs. Biophys. J. 85, 2720–2731 (2003)CrossRefGoogle Scholar
  46. 46.
    Liu, Y., Miyoshi, H., Nakamura, M.: Encapsulated ultrasound microbubbles: therapeutic application in drug/gene delivery. J. Control. Release 114, 89–99 (2006)CrossRefGoogle Scholar
  47. 47.
    Amberg, J.R., Thompson, W.M., Golberger, L., Williamson, S., Alexander, R., Bates, M.: Factors in the intestinal absorption of oral cholecystopaques. Invest. Radiol. 15, S136 (1980)CrossRefGoogle Scholar
  48. 48.
    Berk, R.N., Loeb, P.M.: Pharmacology and physiology of the biliary radiographic contrast materials. Semin. Roentgenol. 11, 147–156 (1976)CrossRefGoogle Scholar
  49. 49.
    Berk, R.N., Loeb, P.M., Cobo-Frenkel, A., Barnhart, J.L.: The biliary and urinary excretion of sodium tyropanoate and sodium ipodate in dogs: Pharmacokinetics, influence of bile salts and choleretic effects with comparison to iopanoic acid. Invest. Radiol. 12, 85 (1977)CrossRefGoogle Scholar
  50. 50.
    Janes, J.O., Dietschy, J.M., Berk, R.N., Loeb, P.M., Barnhart, J.L.: Determinants of the rate of intestinal absorption of oral cholecystographic contrast agents in the dog jejunum. Gastroenterology 76, 970–977 (1979)Google Scholar
  51. 51.
    Chilton, C., Swanson, D., Chilton, H., Thrall, J.: Pharmaceuticals in Medical Imaging. Macmillan Publishing Co. (1990)Google Scholar
  52. 52.
    Sovak, M., Hoey, G.B., Smith, K.R.: Radiocontrast agents. Handb. Exp. Pharmacol. 73, 1–125 (1984)CrossRefGoogle Scholar
  53. 53.
    Dawson, P., Cosgrove, D.O., Grainger, R.G.: Textbook of Contrast Media. Isis Medical Media, Calif (1999)Google Scholar
  54. 54.
    Siegel, R.L., Miller, K.D., Jemal, A.: Cancer statistics, 2015. CA Cancer J. Clin. 65, 5–29 (2015)CrossRefGoogle Scholar
  55. 55.
    Talbot, J.N., Fartoux, L., Balogova, S., Nataf, V., Kerrou, K., Gutman, F., Huchet, V., Ancel, D., Grange, J.D., Rosmorduc, O.: Detection of hepatocellular carcinoma with PET/CT: a prospective comparison of 18F-fluorocholine and 18F-FDG in patients with cirrhosis or chronic liver disease. J. Nucl. Med. 51, 1699–1706 (2010)CrossRefGoogle Scholar
  56. 56.
    How, K.N., Dugue, A.E., Sevin, E., Allouache, N., Lesaunier, F., Joly, F., Aide, N.: Pairwise comparison of 18F-FDG and 18F-FCH PET/CT in prostate cancer patients with rising PSA and known or suspected second malignancy. Nucl. Med. Commun. 37, 348–355 (2016)CrossRefGoogle Scholar
  57. 57.
    Garcia, V., Jimenez, A., Villena, M., Jimenez, L., Borras, M.: 18F-fluorocholine PET/CT, brain MRI, and 5-aminolevulinic acid for the assessment of tumor resection in high-grade glioma. Clin. Nucl. Med. 42, e300–e303 (2017)CrossRefGoogle Scholar
  58. 58.
    Balogova, S., Huchet, V., Kerrou, K., Nataf, V., Gutman, F., Antoine, M., Ruppert, A., Prignon, A., Lavolee, A., Montravers, F., Mayaud, C., Cadranel, J., Talbot, J.: Detection of bronchioloalveolar cancer by means of PET/CT and 18F-fluorocholine, and comparison with 18F-fluorodeoxyglucose. Nucl. Med. Commun. 31, 389–397 (2010)Google Scholar
  59. 59.
    Are, C., Meyer, B., Stack, A., Ahmad, H., Smith, L., Qian, B., Song, T., Chowdhury, S.: Global trends in the burden of liver cancer. J. Surg. Oncol. 115, 591–602 (2017)CrossRefGoogle Scholar
  60. 60.
    Kubota, R., Kubota, K., Yamada, S., Tada, M., Takahashi, T., Iwata, R., Tamahashi, N.: Methionine uptake by tumor tissue: a microautoradiographic comparison with FDG. J. Nucl. Med. 36, 484–492 (1995)Google Scholar
  61. 61.
    Buroni, F.E., Pasi, F., Persico, M.G., Lodola, L., Aprile, C., Nano, R.: Evidence of 18F-FCH uptake in human T98G glioblastoma cells. Anticancer Res. 35, 6439–6443 (2015)Google Scholar
  62. 62.
    Bejanin, A., Schonhaut, D.R., La Joie, R., Kramer, J.H., Baker, S.L., Sosa, N., Ayakta, N., Cantwell, A., Janabi, M., Lauriola, M., O’Neil, J.P., Gorno-Tempini, M.L., Miller, Z.A., Rosen, H.J., Miller, B.L., Jagust, W.J., Rabinovici, G.D.: Tau pathology and neurodegeneration contribute to cognitive impairment in alzheimer’s disease. Brain 140, 3286–3300 (2017)CrossRefGoogle Scholar
  63. 63.
    Kang, J.M., Lee, S.Y., Seo, S., Jeong, H.J., Woo, S.H., Lee, H., Lee, Y.B., Yeon, B.K., Shin, D.H., Park, K.H., Kang, H., Okamura, N., Furumoto, S., Yanai, K., Villemagne, V.L., Seong, J.K., Na, D.L., Ido, T., Cho, J., Lee, K.M., Noh, Y.: Tau positron emission tomography using [(18)F]THK5351 and cerebral glucose hypometabolism in alzheimer’s disease. Neurobiol. Aging 59, 210–219 (2017)CrossRefGoogle Scholar
  64. 64.
    Ueno, A., Masugi, Y., Yamazaki, K., Komuta, M., Effendi, K., Tanami, Y., Tsujikawa, H., Tanimoto, A., Okuda, S., Itano, O., Kitagawa, Y., Kuribayashi, S., Sakamoto, M.: OATP1B3 expression is strongly associated with Wnt/beta-catenin signalling and represents the transporter of gadoxetic acid in hepatocellular carcinoma. J. Hepatol. 61, 1080–1087 (2014)CrossRefGoogle Scholar
  65. 65.
    Junking, M., Grainok, J., Thepmalee, C., Wongkham, S., Yenchitsomanus, P.T.: Enhanced cytotoxic activity of effector T-cells against cholangiocarcinoma by dendritic cells pulsed with pooled mRNA. Tumour Biol. 39, 1010428317733367 (2017)CrossRefGoogle Scholar
  66. 66.
    Piert, M., Montgomery, J., Kunju, L.P., Siddiqui, J., Rogers, V., Rajendiran, T., Johnson, T.D., Shao, X., Davenport, M.S.: 18F-choline PET/MRI: The additional value of pet for MRI-guided transrectal prostate biopsies. J. Nucl. Med. 57, 1065–1070 (2016)CrossRefGoogle Scholar
  67. 67.
    Tardy, I., Pochon, S., Theraulaz, M., Emmel, P., Passantino, L., Tranquart, F., Schneider, M.: Ultrasound molecular imaging of VEGFR2 in a rat prostate tumor model using BR55. Invest. Radiol. 45, 573–578 (2010)CrossRefGoogle Scholar

Copyright information

©  Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  • Senmin Wu
    • 1
  • Hui Zhu
    • 1
  • Jianle Huang
    • 1
  • Kai Chen
    • 1
  • Yan Yang
    • 1
  • Chunpeng Zou
    • 1
  • Zhe Liu
    • 2
    • 3
    • 1
    • 4
    Email author
  1. 1.The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical UniversityWenzhouPeople’s Republic of China
  2. 2.Academy of Medical Engineering and Translational MedicineTianjin UniversityTianjinPeople’s Republic of China
  3. 3.Wenzhou Institute of Biomaterials and EngineeringChinese Academy of SciencesWenzhouPeople’s Republic of China
  4. 4.Wenzhou Institute of Biomedical and EngineeringWenzhou Medical UniversityWenzhouPeople’s Republic of China

Personalised recommendations