Advertisement

Biomedical Applications of Functional Micro-/Nanoimaging Probes

  • Fangfang Yu
  • Shunlong Xu
  • Xianwei Ni
  • Jinmin Ye
  • Yueyue Cheng
  • Pengfei Wang
  • Beibei Wu
  • Chengfang Wang
  • Yanyan Dong
  • Liping Wang
  • Chunchun He
  • Yan YangEmail author
  • Chunpeng Zou
  • Xiangjun Liu
  • Dihua Shangguan
  • Ming Gao
  • Linlin Sun
  • Thomas J. Webster
  • Zhe Liu
Chapter
Part of the Engineering Materials book series (ENG.MAT.)

Abstract

As traditional molecular imaging modalities, the nature and physical fundamentals of MRI, US, OI, radionuclide-based PET/SPECT imaging, X-ray, and CT are elucidated in this chapter. The philosophy for the design, fabrication, and application of representative imaging probes are also described. Meanwhile, advanced imaging modalities and hybrid imaging probes for both clinical and basic study uses are also introduced to present a clear understanding to a broad and interdisciplinary readership especially at the frontiers of molecular imaging research.

References

  1. 1.
    Brown, M.A., Semelka, R.C.: MRI: Basic Principles and Applications. Wiley (2011)Google Scholar
  2. 2.
    Ogawa, S., Tank, D.W., Menon, R., Ellermann, J.M., Kim, S.G., Merkle, H.: Intrinsic signal changes accompanying sensory stimulation: functional brain mapping with magnetic resonance imaging. Proc. Nat. Acad. Sci. USA 89, 5951 (1992)CrossRefGoogle Scholar
  3. 3.
    Devuyst, G., Bogousslavsky, J., Ruchat, P., Jeanrenaud, X., Despland, P.A., Regli, F.: Prognosis after stroke followed by surgical closure of patent foramen ovale: a prospective follow-up study with brain MRI and simultaneous transesophageal and transcranial doppler ultrasound. Neurology 47, 1162–1166 (1996)CrossRefGoogle Scholar
  4. 4.
    Tang, H., Wu, E.X., Ma, Q.Y., Gallagher, D., Perera, G.M., Zhuang, T.: MRI brain image segmentation by multi-resolution edge detection and region selection. Comput. Med. Imaging Graph. 24, 349 (2000)CrossRefGoogle Scholar
  5. 5.
    Heckemann, R.A., Hajnal, J.V., Aljabar, P., Rueckert, D., Hammers, A.: Automatic anatomical brain MRI segmentation combining label propagation and decision fusion. Neuroimage 33, 115–126 (2006)CrossRefGoogle Scholar
  6. 6.
    Osman, N.F., Mcveigh, E.R., Prince, J.L.: Imaging heart motion using harmonic phase MRI. IEEE T. Med. Imaging 19, 186–202 (2000)CrossRefGoogle Scholar
  7. 7.
    Larson, A.C., White, R.D., Laub, G., Mcveigh, E.R., Li, D., Simonetti, O.P.: Self-gated cardiac cine MRI. Magn. Reson. Med. 51, 93 (2004)CrossRefGoogle Scholar
  8. 8.
    Otazo, R., Kim, D.L., Sodickson, D.K.: Combination of compressed sensing and parallel imaging for highly accelerated first-pass cardiac perfusion MRI. Magn. Reson. Med. 64, 767–776 (2010)CrossRefGoogle Scholar
  9. 9.
    Haacke, E.M., Masaryk, T.J., Wielopolski, P.A., Zypman, F.R., Tkach, J.A., Amartur, S.: Optimizing blood vessel contrast in fast three dimensional MRI. Magn. Reson. Med. 14, 202–221 (1990)CrossRefGoogle Scholar
  10. 10.
    Stalder, A.F., Russe, M.F., Frydrychowicz, A., Bock, J., Hennig, J., Markl, M.: Quantitative 2d and 3d phase contrast MRI: optimized analysis of blood flow and vessel wall parameters. Magn. Reson. Med. 60, 1218 (2008)CrossRefGoogle Scholar
  11. 11.
    Degani, H., Gusis, V., Weinstein, D., Fields, S., Strano, S.: Mapping pathophysiological features of breast tumors by MRI at high spatial resolution. Nat. Med. 3, 780–782 (1997)CrossRefGoogle Scholar
  12. 12.
    Lewin, J.S., Connell, C.F., Duerk, J.L., Chung, Y.C., Clampitt, M.E., Spisak, J.: Interactive MRI-guided radiofrequency interstitial thermal ablation of abdominal tumors: clinical trial for evaluation of safety and feasibility. J. Magn. Reson. Imaging 8, 40 (1998)CrossRefGoogle Scholar
  13. 13.
    Sipkins, D.A., Cheresh, D.A., Kazemi, M.R., Nevin, L.M., Bednarski, M.D., Li, K.C.: Detection of tumor angiogenesis in vivo by αvβ3-targeted magnetic resonance imaging. Nat. Med. 4, 623–626 (1998)CrossRefGoogle Scholar
  14. 14.
    Gillies, R.J., Natarajan, R., Karczmar, G.S., Bhujwalla, Z.M.: MRI of the tumor microenvironment. J. Magn. Reson. Imaging 16, 430 (2002)CrossRefGoogle Scholar
  15. 15.
    Barrett, T., Brechbiel, M., Bernardo, M., Choyke, P.L.: MRI of tumor angiogenesis. J. Magn. Reson. Imaging 26, 235–249 (2007)CrossRefGoogle Scholar
  16. 16.
    Gadian, D.G.: NMR and its Applications to Living Systems. Oxford University Press (1995)Google Scholar
  17. 17.
    Callaghan, P.T.: Principles of Nuclear Magnetic Resonance Microscopy. Oxford University Press (1991)Google Scholar
  18. 18.
    Cassidy, P.J., Radda, G.K.: Molecular imaging perspectives. J. R. Soc. Interface 2, 133 (2005)CrossRefGoogle Scholar
  19. 19.
    Padmanabhan, P., Kumar, A., Kumar, S., Chaudhary, R.K., Gulyas, B.: Nanoparticles in practice for molecular-imaging applications: an overview. Acta Biomater. 41, 1 (2016)CrossRefGoogle Scholar
  20. 20.
    Boesch, C.: Molecular aspects of magnetic resonance imaging and spectroscopy. Mol. Aspects Med. 20, 185–318 (1999)CrossRefGoogle Scholar
  21. 21.
    Bean, C.P., Livingston, J.D.: Superparamagnetism. J. Appl. Phys. 30, 120–129 (1959)CrossRefGoogle Scholar
  22. 22.
    Kemshead, J.T., Ugelstad, J.: Magnetic separation techniques: their application to medicine. Mol. Cell. Biochem. 67, 11–18 (1985)Google Scholar
  23. 23.
    Bulte, J.W., Kraitchman, D.L.: Iron oxide MR contrast agents for molecular and cellular imaging. NMR Biomed. 17, 484–499 (2004)CrossRefGoogle Scholar
  24. 24.
    Massart, R., Cabuil, V.: Effect of some parameters on the formation of colloidal magnetite in alkaline medium-yield and particle-size control. J. Chem. Phys. 84, 967–973 (1987)Google Scholar
  25. 25.
    Sun, S., Zeng, H.: Size-controlled synthesis of magnetite nanoparticles. J. Am. Chem. Soc. 124, 8204–8205 (2002)CrossRefGoogle Scholar
  26. 26.
    Sonvico, F., Mornet, S., Vasseur, S., Dubernet, C., Jaillard, D., Degrouard, J., Hoebeke, J., Duguet, E., Colombo, P., Couvreur, P.: Folate-conjugated iron oxide nanoparticles for solid tumor targeting as potential specific magnetic hyperthermia mediators: synthesis, physicochemical characterization, and in vitro experiments. Bioconjugate Chem. 16, 1181–1188 (2005)CrossRefGoogle Scholar
  27. 27.
    Kohler, N., Fryxell, G.E., Zhang, M.: A biofunctional poly(ethylene glycol) silane immobilized on metallic oxide-based nanoparticles for conjugation with cell targeting agents. J. Am. Chem. Soc. 126, 7206–7211 (2004)CrossRefGoogle Scholar
  28. 28.
    Kim, D.K., Toprak, M., Mikhailova, M., Zhang, Y., Bjelke, B., Kehr, J., Muhammed, M.: Surface modification of superparamagnetic nanoparticles for in-vivo bio-medical applications. Mat. Res. Soc. Symp. Proc 704, W11.2.1-6 (2002)Google Scholar
  29. 29.
    Zhou, J., Leuschner, C., Kumar, C., Hormones, J.F., Soboyejo, W.O.: Subecellular accumulation of magnetic nanoparticles in breast tumors and metastases. Biomaterials 27, 2001–2008 (2006)CrossRefGoogle Scholar
  30. 30.
    Jin, R., Lin, B., Li, D., Ai, H.: Superparamagnetic iron oxide nanoparticles for MR imaging and therapy: design considerations and clinical applications. Curr. Opin. Pharm. 18, 18–27 (2014)CrossRefGoogle Scholar
  31. 31.
    Gupta, A.K., Wells, S.: Surface-modified superparamagnetic nanoparticles for drug delivery: preparation, characterization, and cytotoxicity studies. IEEE T. Nanobiosci. 3, 66–73 (2004)CrossRefGoogle Scholar
  32. 32.
    Gupta, A.K., Gupta, M.: Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications. Biomaterials 26, 3995–4021 (2005)CrossRefGoogle Scholar
  33. 33.
    Weissleder, R., Bogdanov, A., Neuwelt, E.A.: Long-circulating iron oxides for MR imaging. Adv. Drug Deliv. Rev. 16, 321–334 (1995)CrossRefGoogle Scholar
  34. 34.
    Corot, C., Robert, P., Idee, J.M.: Recent advances in iron oxide nanocrystal technology for medical imaging. Adv. Drug Deliv. Rev. 58, 1471–1504 (2006)CrossRefGoogle Scholar
  35. 35.
    Anzai, Y., Piccoli, C.W., Outwater, E.K.: Evaluation of neck and body metastases to nodes with ferumoxtran 10-enhanced MR imaging: phase III safety and efficacy study. Radiology 228, 777–788 (2003)CrossRefGoogle Scholar
  36. 36.
    Weissleder, R., Stark, D.D., Engelstad, B.L.: Superparamagnetic iron oxide: pharmacokinetics and toxicity. Am. J. Roentgenol. 152, 167–173 (1989)CrossRefGoogle Scholar
  37. 37.
    Wagner, S., Schnorr, J., Pilgrimm, H., Hamm, B., Taupitz, M.: Monomer-coated very small superparamagnetic iron oxide particles as contrast medium for magnetic resonance imaging: preclinical in vivo characterization. Invest. Radiol. 37, 167–177 (2002)CrossRefGoogle Scholar
  38. 38.
    Chapon, C., Franconi, F., Lacoeuilie, F., Hindre, F., Saulnier, P., Benoit, J.P., Le Jeune, J.J., Lemaire, L.: Imaging E-selectin expression following traumatic brain injury in the rat using a targeted USPIO contrast agent. MAGMA 22, 167–174 (2009)CrossRefGoogle Scholar
  39. 39.
    Michalska, M., Machtoub, L., Manthey, H.D., Bauer, E., Herold, V., Krohne, G., Lykowsky, G., Hildenbrand, M., Kampf, T., Jakob, P., Zernecke, A., Bauer, W.R.: Visualization of vascular inflammation in the atherosclerotic mouse by ultrasmall superparamagnetic iron oxide vascular cell adhesion molecule-1-specific nanoparticles. Arterioscler. Thromb. Vasc. Biol. 32, 2350–2357 (2012)CrossRefGoogle Scholar
  40. 40.
    Shamsipour, F., Zarnani, A.H., Zarnani, A.H., Ghods, R., Chamankhah, M., Forouzesh, F., Vafaei, S., Bayat, A.A., Akhondi, M.M., Ali Oghabian, M., Jeddi-Tehrani, M.: Conjugation of monoclonal antibodies to super paramagnetic iron oxide nanoparticles for detection of HER2/neu antigen on breast cancer cell lines. Avicenna. J. Med. Biotechnol. 1, 27–31 (2009)Google Scholar
  41. 41.
    Meier, R., Henning, T.D., Boddington, S., Arora, S., Piontek, G., Rudelius, M., Corot, C., Daldrup-Link, H.E.: Breast cancers: MR imaging of folate-receptor expression with the folate-specific nanoparticle P1133. Radiology 255, 527–535 (2010)CrossRefGoogle Scholar
  42. 42.
    Araki, T.: SPIO-MRI in the detection of hepatocellular carcinoma. J. Gastroenterol. 35, 874–876 (2000)CrossRefGoogle Scholar
  43. 43.
    Lucidarme, O., Baleston, F., Cadi, M., Bellin, M.F., Charlotte, F., Ratziu, V., Grenier, P.A.: Non-invasive detection of liver fibrosis: is superparamagnetic iron oxide particle-enhanced MR imaging a contributive technique? Eur. Radiol. 13, 467–474 (2003)CrossRefGoogle Scholar
  44. 44.
    Anzai, Y., Prince, M.R.: Iron oxide-enhanced MR lymphography: the evaluation of cervical lymph node metastases in head and neck cancer. J. Magn. Reson. Imaging 7, 75–81 (1997)CrossRefGoogle Scholar
  45. 45.
    American national standard: acoustical terminology. American National Standard Institute, Acoustical Society of America, New York (1994)Google Scholar
  46. 46.
    Mitragotri, S.: Healing sound: the use of ultrasound in drug delivery and other therapeutic applications. Nat. Rev. Drug Discov. 4, 255–260 (2005)CrossRefGoogle Scholar
  47. 47.
    Agrawal, P., Strijkers, G.J., Nicolay, K.: Chitosan-based systems for molecular imaging. Adv. Drug Deliv. Rev. 62, 42–58 (2010)CrossRefGoogle Scholar
  48. 48.
    Paefgen, V., Doleschel, D., Kiessling, F.: Evolution of contrast agents for ultrasound imaging and ultrasound-mediated drug delivery. Front. Pharm. 6, 197 (2015)CrossRefGoogle Scholar
  49. 49.
    Cootney, R.W.: Ultrasound imaging: principles and applications in rodent research. ILAR J. 42, 233 (2001)CrossRefGoogle Scholar
  50. 50.
    Pearlman, A.S., Stevenson, J.G., Baker, D.W.: Doppler echocardiography: applications, limitations and future directions. Am. J. Cardiol. 46, 1256–1262 (1980)CrossRefGoogle Scholar
  51. 51.
    Izadifar, Z., Babyn, P., Chapman, D.: Mechanical and biological effects of ultrasound: A review of present knowledge. Ultrasound Med. Biol. 43, 1085–1104 (2017)CrossRefGoogle Scholar
  52. 52.
    Ter Haar, G.: Therapeutic applications of ultrasound. Prog. Biophys. Mol. Biol. 93, 111–129 (2007)CrossRefGoogle Scholar
  53. 53.
    Miller, M.W., Miller, D.L., Brayman, A.A.: A review of in vitro bioeffects of inertial ultrasonic cavitation from a mechanistic perspective. Ultrasound Med. Biol. 22, 1131–1154 (1996)CrossRefGoogle Scholar
  54. 54.
    Gourevich, D., Volovick, A., Dogadkin, O., Wang, L., Mulvana, H., Medan, Y., Melzer, A., Cochran, S.: In vitro investigation of the individual contributions of ultrasound-induced stable and inertial cavitation in targeted drug delivery. Ultrasound Med. Biol. 41, 1853–1864 (2015)CrossRefGoogle Scholar
  55. 55.
    Sierra, C., Acosta, C., Chen, C., Wu, S.Y., Karakatsani, M.E., Bernal, M., Konofagou, E.E.: Lipid microbubbles as a vehicle for targeted drug delivery using focused ultrasound-induced blood-brain barrier opening. J. Cereb. Blood Flow Metab. 37, 1236–1250 (2017)CrossRefGoogle Scholar
  56. 56.
    Gramiak, R., Shah, P.: Echocardiography of the aortic root. Invest. Radiol. 3, 356–366 (1968)CrossRefGoogle Scholar
  57. 57.
    Liu, Z., Kiessling, F., Gaetjens J.: Advanced nanomaterials in multimodal imaging: design, functionalization, and biomedical applications. J. Nanomater. (2010)Google Scholar
  58. 58.
    Abouelkacem, L., Bachawal, S.V., Willmann, J.K.: Ultrasound molecular imaging: moving toward clinical translation. Eur. J. Radiol. 84, 1685–1693 (2015)CrossRefGoogle Scholar
  59. 59.
    Appis, A.W., Tracy, M.J., Feinstein, S.B.: Update on the safety and efficacy of commercial ultrasound contrast agents in cardiac applications. Echo Res. Pract. 2, R55–R62 (2015)CrossRefGoogle Scholar
  60. 60.
    McCulloch, M., Gresser, C., Moos, S., Odabashian, J., Jasper, S., Bednarz, J., Burgess, P., Carney, D., Moore, V., Sisk, E., Waggoner, A., Witt, S., Adams, D.: Ultrasound contrast physics: a series on contrast echocardiography, article 3. J. Am. Soc. Echocardiogr. 13, 959–967 (2000)CrossRefGoogle Scholar
  61. 61.
    Elsayed, M., Kothandaraman, A., Edirisinghe, M., Huang, J.: Porous polymeric films from microbubbles generated using a T-junction microfluidic device. Langmuir 32, 13377–13385 (2016)CrossRefGoogle Scholar
  62. 62.
    Dolan, M.S., Dent, J., de Filippi, C., Christopher, T., Wible, J.H.: Increasing the dose and rate of Albunex infusion leads to superior left ventricular contrast effect. J. Am. Soc. Echocardiogr. 11, 426–432 (1998)CrossRefGoogle Scholar
  63. 63.
    Drelich-Zbroja, A., Jargiello, T., Szymanska, A., Krzyzanowski, W., Szczerbo-Trojanowska, M.: Can Levovist-enhanced Doppler ultrasound replace angiography in abdominal branches of the aorta imaging? Ultrasound Med. Biol. 29, S195 (2003)CrossRefGoogle Scholar
  64. 64.
    Von Herbay, A., Haeussinger, D., Gregor, M., Vogt, C.: Characterization and detection of hepatocellular carcinoma (HCC): comparison of the ultrasound contrast agents SonoVue (BR1) and Levovist (SHU508A)–comparison of SonoVue and Levovist in HCC. Ultraschall Med. 28, 168–175 (2007)CrossRefGoogle Scholar
  65. 65.
    Miyamoto, Y., Ito, T., Takada, E., Omoto, K., Hirai, T., Moriyasu, F.: Efficacy of sonazoid (perflubutane) for contrast-enhanced ultrasound in the differentiation of focal breast lesions: phase 3 multicenter clinical trial. Am. J. Roentgenol. 202, W400–W407 (2014)CrossRefGoogle Scholar
  66. 66.
    Ni, X., Ye, J., Wang, L., Xu, S., Zou, C., Yang, Y., Liu, Z.: Advanced microbubbles as a multifunctional platform combining imaging and therapy. Appl. Sci. 6, 365 (2016)CrossRefGoogle Scholar
  67. 67.
    Machtaler, S., Knieling, F., Luong, R., Tian, L., Willmann, J.K.: Assessment of inflammation in an acute on chronic model of inflammatory bowel disease with ultrasound molecular imaging. Theranostics 5, 1175–1186 (2015)CrossRefGoogle Scholar
  68. 68.
    Hu, G., Liu, C., Liao, Y., Yang, L., Huang, R., Wu, J., Xie, J., Bundhoo, K., Liu, Y., Bin, J.: Ultrasound molecular imaging of arterial thrombi with novel microbubbles modified by cyclic RGD in vitro and in vivo. Thromb. Haemost. 107, 172–183 (2012)CrossRefGoogle Scholar
  69. 69.
    van Wamel, A., Kooiman, K., Harteveld, M., Emmer, M., ten Cate, F.J., Versluis, M., de Jong, N.: Vibrating microbubbles poking individual cells: drug transfer into cells via sonoporation. J. Control. Release 112, 149–155 (2006)CrossRefGoogle Scholar
  70. 70.
    Schlicher, R.K., Radhakrishna, H., Tolentino, T.P., Apkarian, R.P., Zarnitsyn, V., Prausnitz, M.R.: Mechanism of intracellular delivery by acoustic cavitation. Ultrasound Med. Biol. 32, 915–924 (2006)CrossRefGoogle Scholar
  71. 71.
    Prentice, P., Cuschieri, A., Dholakia, K., Prausnitz, M., Campbell, P.: Membrane disruption by optically controlled microbubble cavitation. Nat. Phys. 1, 107 (2005)CrossRefGoogle Scholar
  72. 72.
    Zhou, Y., Yang, K., Cui, J., Ye, J.Y., Deng, C.X.: Controlled permeation of cell membrane by single bubble acoustic cavitation. J. Control. Release 157, 103–111 (2012)CrossRefGoogle Scholar
  73. 73.
    Caskey, C.F., Stieger, S.M., Qin, S., Dayton, P.A., Ferrara, K.W.: Direct observations of ultrasound microbubble contrast agent interaction with the microvessel wall. J. Acoustic. Soc. Am. 122, 1191–1200 (2007)CrossRefGoogle Scholar
  74. 74.
    Chen, H., Brayman, A.A., Evan, A.P., Matula, T.J.: Preliminary observations on the spatial correlation between short-burst microbubble oscillations and vascular bioeffects. Ultrasound Med. Biol. 38, 2151–2162 (2012)CrossRefGoogle Scholar
  75. 75.
    Dromi, S., Frenkel, V., Luk, A., Traughber, B., Angstadt, M., Bur, M., Poff, J., Xie, J., Libutti, S.K., Wood, B.J.: Pulsed-high intensity focused ultrasound and low temperature-sensitive liposomes for enhanced targeted drug delivery and antitumor effect. Clin. Cancer Res. 13, 2722–2727 (2007)CrossRefGoogle Scholar
  76. 76.
    Watson, K.D., Lai, C.Y., Qin, S., Kruse, D.E., Lin, Y.C., Seo, J.W., Cardiff, R.D., Mahakian, L.M., Beegle, J., Ingham, E.S., Curry, F.R., Reed, R.K., Ferrara, K.W.: Ultrasound increases nanoparticle delivery by reducing intratumoral pressure and increasing transport in epithelial and epithelial-mesenchymal transition tumors. Cancer Res. 72, 1485–1493 (2012)CrossRefGoogle Scholar
  77. 77.
    Fujii, H., Li, S.H., Wu, J., Miyagi, Y., Yau, T.M., Rakowski, H., Egashira, K., Guo, J., Weisel, R.D., Li, R.K.: Repeated and targeted transfer of angiogenic plasmids into the infarcted rat heart via ultrasound targeted microbubble destruction enhances cardiac repair. Eur. Heart J. 32, 2075–2084 (2011)CrossRefGoogle Scholar
  78. 78.
    Bekeredjian, R., Chen, S., Frenkel, P.A., Grayburn, P.A., Shohet, R.V.: Ultrasound-targeted microbubble destruction can repeatedly direct highly specific plasmid expression to the heart. Circulation 108, 1022–1026 (2003)CrossRefGoogle Scholar
  79. 79.
    Chertok, B., Langer, R., Anderson, D.G.: Spatial control of gene expression by nanocarriers using heparin masking and ultrasound-targeted microbubble destruction. ACS Nano 10, 7267–7278 (2016)CrossRefGoogle Scholar
  80. 80.
    Zhu, F., Jiang, Y., Luo, F., Li, P.: Effectiveness of localized ultrasound-targeted microbubble destruction with doxorubicin liposomes in H22 mouse hepatocellular carcinoma model. J. Drug Target. 23, 323–334 (2015)CrossRefGoogle Scholar
  81. 81.
    Aryal, M., Vykhodtseva, N., Zhang, Y.Z., Park, J., Mcdannold, N.: Multiple treatments with liposomal doxorubicin and ultrasound-induced disruption of blood-tumor and blood-brain barriers improves outcomes in a rat glioma model. J. Control. Release 169, 103–111 (2013)CrossRefGoogle Scholar
  82. 82.
    Smith, B.R., Gambhir, S.S.: Nanomaterials for in vivo imaging. Chem. Rev. 117, 901 (2017)CrossRefGoogle Scholar
  83. 83.
    Sevick-Muraca, E.M., Houston, J.P., Gurfinkel, M.: Fluorescence-enhanced, near infrared diagnostic imaging with contrast agents. Curr. Opin. Chem. Biol. 6, 642 (2002)CrossRefGoogle Scholar
  84. 84.
    Weissleder, R., Mahmood, U.: Molecular imaging. Radiology 219, 316 (2001)CrossRefGoogle Scholar
  85. 85.
    Ntziachristos, V., Ripoll, J., Wang, L.V., Weissleder, R.: Looking and listening to light: the evolution of whole-body photonic imaging. Nat. Biotechnol. 23, 313 (2005)CrossRefGoogle Scholar
  86. 86.
    Wang, J., Mi, P., Lin, G., Wang, Y.X., Liu, G., Chen, X.: Imaging guided delivery of RNAi for anticancer treatment. Adv. Drug Deliv. Rev. 104, 44–60 (2016)CrossRefGoogle Scholar
  87. 87.
    Zanzonico, P.: Noninvasive imaging for supporting basic research. In: Small Animal Imaging. Springer, Berlin (2011)Google Scholar
  88. 88.
    Wu, X., Wu, M., Zhao, J.X.: Recent development of silica nanoparticles as delivery vectors for cancer imaging and therapy. Nanomed. Nanotech. Biol. Med. 10, 297–312 (2014)CrossRefGoogle Scholar
  89. 89.
    Zhao, X., Tapec-Dytioco, R., Tan, W.: Ultrasensitive DNA detection using highly fluorescent bioconjugated nanoparticles. J. Am. Chem. Soc. 125, 11474 (2003)CrossRefGoogle Scholar
  90. 90.
    Herr, J.K., Smith, J.E., Medley, C.D., Shangguan, D., Tan, W.: Aptamer-conjugated nanoparticles for selective collection and detection of cancer cells. Anal. Chem. 78, 2918–2924 (2006)CrossRefGoogle Scholar
  91. 91.
    Bamrungsap, S., Chen, T., Shukoor, M.I., Chen, Z., Sefah, K., Chen, Y., Tan, W.: Pattern recognition of cancer cells using aptamer-conjugated magnetic nanoparticles. ACS Nano 6, 3974–3981 (2012)CrossRefGoogle Scholar
  92. 92.
    Lu, J., Liong, M., Li, Z., Zink, J.I., Tamanoi, F.: Biocompatibility, biodistribution, and drug-delivery efficiency of mesoporous silica nanoparticles for cancer therapy in animals. Small 6, 1794–1805 (2010)CrossRefGoogle Scholar
  93. 93.
    Jun, B.H., Hwang, D.W., Jung, H.S., Jang, J., Kim, H., Kang, H.: Ultrasensitive, biocompatible, quantum-dot-embedded silica nanoparticles for bioimaging. Adv. Func. Mater. 22, 1843–1849 (2012)CrossRefGoogle Scholar
  94. 94.
    Wilhelm, M., Zhao, C.L., Wang, Y., Xu, R., Winnik, M.A., Mura, J.L.: Poly (styrene-ethylene oxide) block copolymer micelle formation in water: a fluorescence probe study. Macromolecules 24, 1033–1040 (1991)CrossRefGoogle Scholar
  95. 95.
    Yan, K., Li, H., Li, P., Zhu, H., Shen, J., Yi, C.: Self-assembled magnetic fluorescent polymeric micelles for magnetic resonance and optical imaging. Biomaterials 35, 344–355 (2014)CrossRefGoogle Scholar
  96. 96.
    Li, C., Xia, J., Wei, X., Yan, H., Si, Z., Ju, S.: Ph-activated near-infrared fluorescence nanoprobe imaging tumors by sensing the acidic microenvironment. Adv. Func. Mater. 20, 2222–2230 (2010)CrossRefGoogle Scholar
  97. 97.
    Wang, W., Cheng, D., Gong, F., Miao, X., Shuai, X.: Design of multifunctional micelle for tumor-targeted intracellular drug release and fluorescent imaging. Adv. Mater. 24, 115–120 (2012)CrossRefGoogle Scholar
  98. 98.
    Auzel, F.: Upconversion and anti-stokes processes with f- and d-ions in solids. Chem. Rev. 104, 139–173 (2004)CrossRefGoogle Scholar
  99. 99.
    Gu, Z., Yan, L., Tian, G., Li, S., Chai, Z., Zhao, Y.: Recent advances in design and fabrication of upconversion nanoparticles and their safe theranostic applications. Adv. Mater. 25, 3758–3779 (2013)CrossRefGoogle Scholar
  100. 100.
    Liu, Y., Tu, D., Zhu, H., Chen, X.: Lanthanide-doped luminescent nanoprobes: controlled synthesis, optical spectroscopy, and bioapplications. Chem. Soc. Rev. 42, 6924 (2013)CrossRefGoogle Scholar
  101. 101.
    Cheng, L., Yang, K., Li, Y., Chen, J., Wang, C., Shao, M., Lee, S.T., Liu, Z.: Facile preparation of multifunctional upconversion nanoprobes for multimodal imaging and dual-targeted photothermal therapy. Angew. Chem. Int. Ed. 50, 7385–7390 (2011)CrossRefGoogle Scholar
  102. 102.
    Cheng, L., Wang, C., Liu, Z.: Upconversion nanoparticles and their composite nanostructures for biomedical imaging and cancer therapy. Nanoscale 5, 23–37 (2012)CrossRefGoogle Scholar
  103. 103.
    Ehlert, O., Thomann, R., Darbandi, M., Nann, T.: A four-color colloidal multiplexing nanoparticle system. ACS Nano 2, 120 (2008)CrossRefGoogle Scholar
  104. 104.
    Liu, Q., Yang, T., Feng, W., Li, F.: Blue-emissive upconversion nanoparticles for low-power-excited bioimaging in vivo. J. Am. Chem. Soc. 134, 5390 (2012)CrossRefGoogle Scholar
  105. 105.
    Liu, Q., Yin, B., Yang, T., Yang, Y., Shen, Z., Yao, P.: A general strategy for biocompatible, high-effective upconversion nanocapsules based on triplet-triplet annihilation. J. Am. Chem. Soc. 135, 5029 (2013)CrossRefGoogle Scholar
  106. 106.
    Xiong, L.Q., Chen, Z.G., Yu, M.X., Li, F.Y., Liu, C., Huang, C.H.: Synthesis, characterization, and in vivo targeted imaging of amine-functionalized rare-earth up-converting nanophosphors. Biomaterials 30, 5592–5600 (2009)CrossRefGoogle Scholar
  107. 107.
    Xiong, L., Chen, Z., Tian, Q., Cao, T., Xu, C., Li, F.: High contrast upconversion luminescence targeted imaging in vivo using peptide-labeled nanophosphors. Anal. Chem. 81, 8687–8694 (2009)CrossRefGoogle Scholar
  108. 108.
    Wang, M., Mi, C.C., Wang, W.X., Liu, C.H., Wu, Y.F., Xu, Z.R.: Immunolabeling and nir-excited fluorescent imaging of HeLa cells by using NaYF4: Yb, Er upconversion nanoparticles. ACS Nano 3, 1580 (2009)CrossRefGoogle Scholar
  109. 109.
    Cheng, L., Yang, K., Zhang, S., Shao, M., Lee, S., Liu, Z.: Highly-sensitive multiplexed in vivo, imaging using pegylated upconversion nanoparticles. Nano Res. 3, 722–732 (2010)CrossRefGoogle Scholar
  110. 110.
    Liang, C., Wang, C., Ma, X., Wang, Q., Cheng, Y., Wang, H.: Multifunctional upconversion nanoparticles for dual-modal imaging-guided stem cell therapy under remote magnetic control. Adv. Func. Mater. 23, 272–280 (2013)CrossRefGoogle Scholar
  111. 111.
    Zhao, L., Kutikov, A., Shen, J., Duan, C., Song, J., Han, G.: Stem cell labeling using polyethylenimine conjugated (α-naybf4:tm3 +)/caf2 upconversion nanoparticles. Theranostics 3, 249–257 (2013)CrossRefGoogle Scholar
  112. 112.
    Min, Y., Li, J., Liu, F., Padmanabhan, P., Yeow, E., Xing, B.: Recent advance of biological molecular imaging based on lanthanide-doped upconversion-luminescent nanomaterials. Nanomaterials 4, 129–154 (2014)CrossRefGoogle Scholar
  113. 113.
    Phelps, M.E., Hoffman, E.J., Mullani, N.A., Ter-Pogossian, M.M.: Application of annihilation coincidence detection to transaxial reconstruction tomography. J. Nuc. Med. 16, 210 (1975)Google Scholar
  114. 114.
    Terpogossian, M.M., Phelps, M.E., Hoffman, E.J., Mullani, N.A.: A positron-emission transaxial tomograph for nuclear imaging. Radiology 114, 89 (1975)CrossRefGoogle Scholar
  115. 115.
    Soret, M., Bacharach, S.L., Buvat, I.: Partial-volume effect in PET tumor imaging. J. Nuc. Med. 48, 932–945 (2007)CrossRefGoogle Scholar
  116. 116.
    Cascini, G.L., Avallone, A., Delrio, P., Guida, C., Tatangelo, F., Marone, P.: 18F-FDG pet is an early predictor of pathologic tumor response to preoperative radiochemotherapy in locally advanced rectal cancer. J. Nuc. Med. 47, 1241 (2006)Google Scholar
  117. 117.
    Kwee, R.M.: Prediction of tumor response to neoadjuvant therapy in patients with esophageal cancer with use of 18F-FDG PET: a systematic review. Radiology 254, 707–717 (2010)CrossRefGoogle Scholar
  118. 118.
    Phelps, M.E.: Positron Emission Tomography Clinical Brain Imaging: Principles and Applications. F.A. Davis Company, Philadelphia (1992)Google Scholar
  119. 119.
    Sharma, V., Luker, G.D., Piwnicaworms, D.: Molecular imaging of gene expression and protein function in vivo with PET and SPECT. J. Magn. Reson. Imaging 16, 336–351 (2002)CrossRefGoogle Scholar
  120. 120.
    Kirsch, M., Wannez, S., Thibaut, A., Laureys, S., Brichant, J.F., Bonhomme, V.: Positron emission tomography: basic principles, new applications, and studies under anesthesia. Int. Anesthesiol. Clin. 54, 109 (2016)CrossRefGoogle Scholar
  121. 121.
    Zanzonico, P.: Positron emission tomography: a review of basic principles, scanner design and performance, and current systems. Semin. Nuc. Med. 34, 87 (2004)CrossRefGoogle Scholar
  122. 122.
    Schwinger, J.: Source theory analysis of electron-positron annihilation experiments. Proc. Nat. Acad. Sci. USA 72, 4725–4728 (1975)CrossRefGoogle Scholar
  123. 123.
    Mirabello, V., Calatayud, D.G., Arrowsmith, R.L., Ge, H., Pascu, S.I.: Metallic nanoparticles as synthetic building blocks for cancer diagnostics: from materials design to molecular imaging applications. J. Mater. Chem. B 3, 5657–5672 (2015)CrossRefGoogle Scholar
  124. 124.
    Kuhl, D.E., Edwards, R.Q.: Image separation radioisotope scanning. Radiology 80, 653–666 (1963)CrossRefGoogle Scholar
  125. 125.
    Vogel, R.A., Kirch, D., Lefree, M., Steele, P.: A new method of multiplanar emission tomography using a seven pinhole collimator and an anger scintillation camera. J. Nuc. Med. 19, 648–654 (1978)Google Scholar
  126. 126.
    Groch, M.W., Ali, A., Erwin, W.D., Fordham, E.F.: Focal plane dual-head longitudinal tomography. In: Ahluwalia, B.D. (ed.) Tomographic Methods in Nuclear Medicine: Physical Principles, Instruments and Clinical Applications, pp. 123–150. FL. CRC Press, Boca Raton (1989)Google Scholar
  127. 127.
    Murphy, P.H., Thompson, W.L., Moore, M.L., Burdine, J.A.: Radionuclide computed tomography of the body using routine radiopharmaceuticals. I. System characterization. J. Nuc. Med. 20, 102–107 (1979)Google Scholar
  128. 128.
    Keidar, Z., Israel, O., Krausz, Y.: SPECT/CT in tumor imaging: technical aspects and clinical applications. Semin. Nuc. Med. 33, 205 (2003)CrossRefGoogle Scholar
  129. 129.
    Heiba, S.I., Kolker, D., Mocherla, B., Kapoor, K., Jiang, M., Son, H.: The optimized evaluation of diabetic foot infection by dual isotope SPECT/CT imaging protocol. J. Foot Ankle Surg. 49, 529–536 (2010)CrossRefGoogle Scholar
  130. 130.
    Spanu, A., Solinas, M.F., Sanna, D., Nuvoli, S., Madeddu, G.: 131I SPECT/CT in the follow-up of differentiated thyroid carcinoma: incremental value versus planar imaging. J. Nuc. Med. 50, 184 (2009)CrossRefGoogle Scholar
  131. 131.
    Mandl, S., Schimmelpfennig, C., Edinger, M., Negrin, R.S., Contag, C.H.: Understanding immune cell trafficking patterns via in vivo bioluminescence imaging. J. Cell. Biochem. Suppl. 39, 239 (2002)CrossRefGoogle Scholar
  132. 132.
    Lu, F.M., Yuan, Z.: PET/SPECT molecular imaging in clinical neuroscience: recent advances in the investigation of CNS diseases. Quant. Imaging Med. Surg. 5, 433–447 (2015)Google Scholar
  133. 133.
    Pimlott, S.L., Sutherland, A.: Molecular tracers for the PET and SPECT imaging of disease. Chem. Soc. Rev. 40, 149–162 (2011)CrossRefGoogle Scholar
  134. 134.
    Kannan, S., Saadani-Makki, F., Balakrishnan, B.: Magnitude of [11C] PK11195 binding is related to severity of motor deficits in a rabbit model of cerebral palsy induced by intrauterine endotoxin exposure. Dev. Neurosci. (Basel) 33, 231–240 (2011)CrossRefGoogle Scholar
  135. 135.
    Chung, Y.A., Jh, O., Kim, J.Y.: Hypoperfusion and ischemia in cerebral amyloid angiopathy documented by 99mTc-ECD brain perfusion SPECT. J. Nuc. Med. 2009, 50 (1969)Google Scholar
  136. 136.
    Hyafil, F., Cornily, J.C., Feig, J.E., Gordon, R., Vucic, E., Amirbekian, V.: Noninvasive detection of macrophages using a nanoparticulate contrast agent for computed tomography. Nat. Med. 13, 636–641 (2007)CrossRefGoogle Scholar
  137. 137.
    Jakhmola, A., Anton, N., Vandamme, T.F.: Inorganic nanoparticles based contrast agents for X-ray computed tomography. Adv. Healthcare Mater. 1, 413–431 (2012)CrossRefGoogle Scholar
  138. 138.
    Archana, R., Sushma, P., Ashok, L., Sujatha, G.P.: Cone-beam computed tomography: small cone big scoop! J. Dent. Oral Med. 3, 501 (2010)Google Scholar
  139. 139.
    Pysz, M.A., Gambhir, S.S., Willmann, J.K.: Molecular imaging: current status and emerging strategies. Clin. Radiol. 65, 500–516 (2010)CrossRefGoogle Scholar
  140. 140.
    Chung, Y.E., Hyung, W.J., Kweon, S., Lim, S.J., Lee, M.H., Kim, H., Myoung, S., Lim, J.S.: Feasibility of interstitial CT lymphography using optimized iodized oil emulsion in rats. Invest. Radiol. 45, 142–148 (2010)CrossRefGoogle Scholar
  141. 141.
    Kweon, S.J., Lee, H.J., Suh, J.S., Lim, J.S., Lim, S.J.: Liposomes coloaded with iopamidol/lipiodol as a RES-targeted contrast agent for computed tomography imaging. Pharm. Res. 27, 1408–1415 (2010)CrossRefGoogle Scholar
  142. 142.
    Yin, Q., Yap, F.Y., Yin, L., Ma, L., Zhou, Q., Dobrucki, L.W., Fan, T.M., Gaba, R.C., Cheng, J.: Poly(iohexol) nanoparticles as contrast agents for in vivo X-ray computed tomography imaging. J. Am. Chem. Soc. 135, 13620–13623 (2013)CrossRefGoogle Scholar
  143. 143.
    Rabin, O., Maneul, P.J., Grimm, J., Wojtkiewicz, G., Weissleder, R.: An X-ray computed tomography imaging agent based on long-circulating bismuth sulphide nanoparticles. Nat. Mater. 5, 118–122 (2006)CrossRefGoogle Scholar
  144. 144.
    Pan, D., Schirra, C.O., Senpan, A., Schmieder, A.H., Stacy, A.J., Roessl, E., Thran, A., Wickline, S.A., Proska, R., Lanza, G.M.: An early investigation of ytterbium nanocolloids for selective and quantitative “multicolor” spectral CT imaging. ACS Nano 6, 3364–3370 (2012)CrossRefGoogle Scholar
  145. 145.
    Jakhmola, A., Anton, N., Anton, H., Messaddeq, N., Hallouard, F., Klymchenko, A., Mely, Y., Vandamme, T.F.: Poly-ε-caprolactone tungsten oxide nanoparticles as a contrast agent for X-ray computed tomography. Biomaterials 35, 2981–2986 (2014)CrossRefGoogle Scholar
  146. 146.
    Yamanaka, M., Smith, N.I., Fujita, K.: Introduction to super-resolution microscopy. Microscopy 63, 177–192 (2014)CrossRefGoogle Scholar
  147. 147.
    Kobayashi, H., Longmire, M.R., Ogawa, M., Choyke, P.L.: Rational chemical design of the next generation of molecular imaging probes based on physics and biology: mixing modalities, colors and signals. Chem. Soc. Rev. 40, 4626–4648 (2011)CrossRefGoogle Scholar
  148. 148.
    Cai, W.B., Chen, X.Y.: Multimodality molecular imaging of tumor angiogenesis. J. Nuc. Med. 49, 113S–128S (2008)CrossRefGoogle Scholar
  149. 149.
    Olson, E.S., Jiang, T., Aguilera, T.A., Nguyen, Q.T., Ellies, L.G., Scadeng, M.: Activatable cell penetrating peptides linked to nanoparticles as dual probes for in vivo fluorescence and mr imaging of proteases. Proc. Nat. Acad. Sci. USA 107, 4311–4316 (2010)CrossRefGoogle Scholar
  150. 150.
    Savic, R., Luo, L., Eisenberg, L., Maysinger, D.: Micellar nanocontainers distribute to defined cytoplasmic organelles. Science 300, 615–618 (2003)CrossRefGoogle Scholar
  151. 151.
    Miura, Y., Tsuji, A.B., Sugyo, A., Sudo, H., Aoki, I., Inubushi, M.: Polymeric micelle platform for multimodal tomographic imaging to detect scirrhous gastric cancer. ACS Biomater. Sci. Eng. 1, 1067–1076 (2015)CrossRefGoogle Scholar
  152. 152.
    Seulki, L., Chen, X.: Dual-modality probes for in vivo molecular imaging. Mol. Imaging 8, 87–100 (2009)Google Scholar
  153. 153.
    Louie, A.Y.: Multimodality imaging probes: design and challenges. Chem. Rev. 110, 3146–3195 (2010)CrossRefGoogle Scholar
  154. 154.
    Glaus, C., Rossin, R., Welch, M.J., Bao, G.: In vivo evaluation of 64Cu-labeled magnetic nanoparticles as a dual-modality PET/MR imaging agent. Bioconjugate Chem. 21, 715 (2010)CrossRefGoogle Scholar
  155. 155.
    Sun, I.C., Eun, D.K., Na, J.H., Lee, S., Kim, I.J., Youn, I.C.: Heparin-coated gold nanoparticles for liver-specific CT imaging. Chemistry 15, 13341–13347 (2009)CrossRefGoogle Scholar
  156. 156.
    Qian, X.M., Nie, S.M.: Single-molecule and single-nanoparticle sers: from fundamental mechanisms to biomedical applications. Chem. Soc. Rev. 37, 912–920 (2008)CrossRefGoogle Scholar
  157. 157.
    Eustis, S., Elsayed, M.A.: Why gold nanoparticles are more precious than pretty gold: noble metal surface plasmon resonance and its enhancement of the radiative and nonradiative properties of nanocrystals of different shapes. Chem. Soc. Rev. 35, 209 (2006)CrossRefGoogle Scholar
  158. 158.
    Dreaden, E.C., Mackey, M.A., Huang, X., Kang, B., Elsayed, M.A.: Beating cancer in multiple ways using nanogold. Chem. Soc. Rev. 40, 3391 (2011)CrossRefGoogle Scholar
  159. 159.
    Song, Y., Xu, X., Macrenaris, K.W., Zhang, X.Q., Mirkin, C.A., Meade, T.J.: Multimodal gadolinium-enriched dna gold nanoparticle conjugates for cellular imaging. Angew. Chem. 48, 9143 (2009)CrossRefGoogle Scholar
  160. 160.
    Sun, H., Yuan, Q., Zhang, B., Ai, K., Zhang, P., Lu, L.: Gd(III) functionalized gold nanorods for multimodal imaging applications. Nanoscale 3, 1990–1996 (2011)CrossRefGoogle Scholar
  161. 161.
    Sun, M., Peng, D., Hao, H., Hu, J., Wang, D., Wang, K.: Thermally triggered in situ assembly of gold nanoparticles for cancer multimodal imaging and photothermal therapy. ACS Appl. Mater. Interfaces. 9, 10453 (2017)CrossRefGoogle Scholar
  162. 162.
    Ji, S.R., Liu, C., Zhang, B., Yang, F., Xu, J., Long, J.: Carbon nanotubes in cancer diagnosis and therapy. Biochim. Biophys. Acta 1806, 29 (2010)Google Scholar
  163. 163.
    Chen, B., Zhang, H., Zhai, C., Du, N., Sun, C., Xue, J.: Carbon nanotube-based magnetic-fluorescent nanohybrids as highly efficient contrast agents for multimodal cellular imaging. J. Mater. Chem. 20, 9895–9902 (2010)CrossRefGoogle Scholar
  164. 164.
    Chen, B., Zhang, H., Du, N., Zhang, B., Wu, Y., Shi, D.: Magnetic-fluorescent nanohybrids of carbon nanotubes coated with Eu, Gd Co-doped LaF3 as a multimodal imaging probe. J. Colloid Interface Sci. 367, 61 (2012)CrossRefGoogle Scholar
  165. 165.
    Yang, K., Hu, L., Ma, X., Ye, S., Cheng, L., Shi, X.: Multimodal imaging guided photothermal therapy using functionalized graphene nanosheets anchored with magnetic nanoparticles. Adv. Mater. 2012, 24 (1868)Google Scholar

Copyright information

©  Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  • Fangfang Yu
    • 1
  • Shunlong Xu
    • 1
  • Xianwei Ni
    • 1
  • Jinmin Ye
    • 1
  • Yueyue Cheng
    • 1
  • Pengfei Wang
    • 1
  • Beibei Wu
    • 1
  • Chengfang Wang
    • 1
  • Yanyan Dong
    • 1
  • Liping Wang
    • 1
  • Chunchun He
    • 1
  • Yan Yang
    • 1
    Email author
  • Chunpeng Zou
    • 1
  • Xiangjun Liu
    • 2
  • Dihua Shangguan
    • 2
  • Ming Gao
    • 3
  • Linlin Sun
    • 3
  • Thomas J. Webster
    • 3
  • Zhe Liu
    • 4
    • 5
    • 1
    • 6
  1. 1.The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical UniversityWenzhouPeople’s Republic of China
  2. 2.Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of ChemistryChinese Academy of SciencesBeijingPeople’s Republic of China
  3. 3.Department of Chemical EngineeringNortheastern University 313 Snell Engineering CenterBostonUSA
  4. 4.Academy of Medical Engineering and Translational MedicineTianjin UniversityTianjinPeople’s Republic of China
  5. 5.Wenzhou Institute of Biomaterials and EngineeringChinese Academy of SciencesWenzhouPeople’s Republic of China
  6. 6.Wenzhou Institute of Biomaterials and EngineeringWenzhou Medical UniversityWenzhouPeople’s Republic of China

Personalised recommendations