Design, Fabrication, and Modification Protocols of Functional Micro-/Nanoimaging Probes

  • Doudou Wang
  • Li LiuEmail author
  • Wei Ma
  • Daren Liu
  • Qiuming Su
  • Xuemei Gu
  • Gaoyi Yang
  • Zhe Liu
Part of the Engineering Materials book series (ENG.MAT.)


The biosafety of micro-/nanoimaging probes is one of the most important elements that should be taken into consideration before their design and fabrication. In order to endow them specificity to lesions and bioavailability in vivo, targeting biomolecules, optimized biodistribution, and acceptable biocompatibility need to be introduced. These prerequisites ensure their behavior in the body and pave the way for their ultimate medical applications in humans, which should be pursued throughout the development of molecular imaging probes.


  1. 1.
    Hermanson, G.T.: Bioconjugate Techniques, 4th edn. Elsevier Inc. (2013)Google Scholar
  2. 2.
    Robert, A.F.: Nanomedicine, Volume IIA: Biocompatibility. CRC Press (2003)Google Scholar
  3. 3.
    Jiang, S., Win, K.Y., Liu, S., Teng, C.P., Zheng, Y., Han, M.Y.: Surface-functionalized nanoparticles for biosensing and imaging-guided therapeutics. Nanoscale 5, 3127–3148 (2013)CrossRefGoogle Scholar
  4. 4.
    Chiang, C.L.: Controlled growth of gold nanoparticles in aerosol-OT/sorbitan monooleate/isooctane mixed reverse micelles. J. Colloid Interface Sci. 230, 60–66 (2000)CrossRefGoogle Scholar
  5. 5.
    Spanhel, L., Arpac, E., Schmidt, H.: Semiconductor clusters in the sol-gel process: synthesis and properties of CdS nanocomposites. J. Non-Cryst. Solids 147–148, 657–662 (1992)CrossRefGoogle Scholar
  6. 6.
    Yoffe, S., Leshuk, T., Everett, P., Gu, F.: Superparamagnetic iron oxide nanoparticles (SPIONs): synthesis and surface modification techniques for use with MRI and other biomedical applications. Curr. Pharm. Des. 19, 493–509 (2013)CrossRefGoogle Scholar
  7. 7.
    Teichmann, A., Heuschkel, S., Jocabi, U., Presse, G., Neubert, R.H.: Comparison of stratum corneum penetration and localization of a lipophilic model drug applied in an o/w microemulsion and an amphiphilic cream. Eur. J. Pharm. Biopharm. 67, 699–706 (2007)CrossRefGoogle Scholar
  8. 8.
    Liu, Z.; Kiessling, F.; Gaetjens, J.: Advanced nanomaterials in multimodal imaging: design, functionalization and biomedical applications. J. Nanomater. 894303 (2010)Google Scholar
  9. 9.
    Long, N.V., Yang, Y., Teranishi, T., Thi, C.M., Cao, Y., Nogami, M.: Biomedical applications of advanced multifunctional magnetic nanoparticles. J. Nanosci. Nanotechnol. 15, 10091–10107 (2015)CrossRefGoogle Scholar
  10. 10.
    Geszkemoritz, M., Piotrowska, H., Murias, M.: Thioglycerol-capped Mn-doped ZnS quantum dot bioconjugates as efficient two-photon fluorescent nano-probes for bioimaging. J. Mater. Chem. B 1, 698–706 (2013)CrossRefGoogle Scholar
  11. 11.
    Zhang, P., Zhao, Z., Li, C., Su, H., Wu, Y., Kwok, R.T.K., Lam, J.W.Y., Gong, P., Cai, L., Tang, B.Z.: Aptamer-decorated self-assembled AIE organic dots for cancer cell targeting and imaging. Anal. Chem. 90, 1063–1067 (2018)CrossRefGoogle Scholar
  12. 12.
    Su, X., Cheng, K., Jeon, J., Shen, B., Venturin, G.T.: Comparison of two site-specifically 18F-labeled affibodies for PET imaging of EGFR positive tumors. Mol. Pharm. 11, 3947–3956 (2014)CrossRefGoogle Scholar
  13. 13.
    Yu, G., Liang, J., He, Z., Sun, M.: Quantum dot-mediated detection of γ-aminobutyric acid binding sites on the surface of living pollen protoplasts in Tobacco. Chem. Biol. 13, 723–731 (2006)CrossRefGoogle Scholar
  14. 14.
    Akerman, M.E., Chan, W.C., Laakkonen, P., Bhatia, S.N., Ruoslahti, E.: Nanocrystal targeting in vivo. Proc. Natl. Acad. Sci. U.S.A. 99, 12617–12621 (2002)CrossRefGoogle Scholar
  15. 15.
    Wang, Y., Yao, C., Li, C., Ding, L., Liu, J., Dong, P., Fang, H., Lei, Z., Shi, G., Wu, M.: Excess titanium dioxide nanoparticles on the cell surface induce cytotoxicity by hindering ion exchange and disrupting exocytosis processes. Nanoscale 7, 13105–13115 (2015)CrossRefGoogle Scholar
  16. 16.
    Chatterjee, K., Sarkar, S., Jagajjanani Rao K., Paria, S.: Core/shell nanoparticles in biomedical applications. Adv. Colloid Interface Sci. (2014).
  17. 17.
    Kumar, R., Roy, I., Ohulchanskyy, T.Y., Goswami, L.N., Bonoiu, A.C., Bergey, E.J., Tramposch, K.M., Maitra, A., Prasad, P.N.: Covalently dye-linked, surface-controlled, and bioconjugated organically modified silica nanoparticles as targeted probes for optical imaging. ACS Nano 2, 449–456 (2008)CrossRefGoogle Scholar
  18. 18.
    Ren, H.B., Wu, B.Y., Chen, J.T., Yan, X.P.: Silica-coated S(2-)-enriched manganese-doped ZnS quantum dots as a photoluminescence probe for imaging intracellular Zn2+ ions. Anal. Chem. 83, 8239–8244 (2011)CrossRefGoogle Scholar
  19. 19.
    Ma, Q., Nakane, Y., Mori, Y., Hasegawa, M., Yoshioka, Y., Watanabe, T.M., Gonda, K., Ohuchi, N., Jin, T.: Multilayered, core/shell nanoprobes based on magnetic ferric oxide particles and quantum dots for multimodality imaging of breast cancer tumors. Biomaterials 33, 8486–8494 (2012)CrossRefGoogle Scholar
  20. 20.
    He, K., Tang, M.: Safety of novel liposomal drugs for cancer treatment: Advances and prospects. Chem. Biol. Interact. (2017). Scholar
  21. 21.
    D’souza, A.A., Shegokar, R.: Polyethylene glycol (PEG): a versatile polymer for pharmaceutical applications. Expert Opin. Drug Deliv. 13, 1257–1275 (2016)CrossRefGoogle Scholar
  22. 22.
    Turecek, P.L., Bossard, M.J., Schoetens, F., Ivens, I.A.: PEGylation of biopharmaceuticals: a review of chemistry and nonclinical safety information of approved drugs. J. Pharm. Sci. 105, 460–475 (2016)CrossRefGoogle Scholar
  23. 23.
    Huang, P., Qian, X., Chen, Y., Yu, L., Lin, H., Wang, L., Zhu, Y., Shi, J.: Metalloporphyrin-encapsulated biodegradable nanosystems for highly efficient magnetic resonance imaging-guided sonodynamic cancer therapy. J. Am. Chem. Soc. 139, 1275–1284 (2017)CrossRefGoogle Scholar
  24. 24.
    Gabizon, A., Catane, R., Uziely, B., Kaufman, B., Safra, T., Cohen, R., Martin, F., Huang, A., Barenholz, Y.: Prolonged circulation time and enhanced accumulation in malignant exudates of doxorubicin encapsulated in polyethylene-glycol coated liposomes. Cancer Res. 54, 987–992 (1994)Google Scholar
  25. 25.
    Gabizon, A., Shmeeda, H., Grenader, T.: Pharmacological basis of pegylated liposomal doxorubicin: impact on cancer therapy. Eur. J. Pharm. Sci. 45, 388–398 (2012)CrossRefGoogle Scholar
  26. 26.
    Takami, S., Sato, T., Mousavand, T., Adschiri, T.: Hydrothermal synthesis of surface-modified iron oxide nanoparticles. Mater. Lett. 61, 4769–4772 (2007)CrossRefGoogle Scholar
  27. 27.
    Zheng, Y.H., Yao, C., Feng, B., Wang, Y.: Synthesis and magnetic properties of Fe3O4 nanoparticles. Mater. Res. Bull. 41, 525–529 (2006)CrossRefGoogle Scholar

Copyright information

©  Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  • Doudou Wang
    • 1
  • Li Liu
    • 2
    • 3
    Email author
  • Wei Ma
    • 4
  • Daren Liu
    • 5
  • Qiuming Su
    • 6
  • Xuemei Gu
    • 7
  • Gaoyi Yang
    • 8
  • Zhe Liu
    • 9
    • 11
    • 10
    • 12
  1. 1.Wenzhou Medical UniversityWenzhouPeople’s Republic of China
  2. 2.Institute of Chemistry, Chinese Academy of SciencesBeijingPeople’s Republic of China
  3. 3.Beijing National Laboratory for Molecular SciencesBeijingPeople’s Republic of China
  4. 4.Institute for Materials Chemistry and Engineering (IMCE), Kyushu UniversityFukuokaJapan
  5. 5.The Second Affiliated Hospital of Zhejiang UniversityHangzhouPeople’s Republic of China
  6. 6.School of MedicineZhejiang UniversityHangzhouPeople’s Republic of China
  7. 7.The First Affiliated Hospital of Wenzhou Medical UniversityWenzhouPeople’s Republic of China
  8. 8.Hangzhou Red Cross HospitalHangzhouPeople’s Republic of China
  9. 9.Academy of Medical Engineering and Translational MedicineTianjin UniversityTianjinPeople’s Republic of China
  10. 10.The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical UniversityWenzhouPeople’s Republic of China
  11. 11.Wenzhou Institute of Biomaterials and EngineeringChinese Academy of SciencesWenzhouPeople’s Republic of China
  12. 12.Wenzhou Institute of Biomaterials and EngineeringWenzhou Medical UniversityWenzhouPeople’s Republic of China

Personalised recommendations