Functional Micro-/Nanomaterials for Imaging Technology

  • Waner Chen
  • Wei Ma
  • Chunpeng Zou
  • Yan Yang
  • Gaoyi Yang
  • Li Liu
  • Zhe LiuEmail author
Part of the Engineering Materials book series (ENG.MAT.)


Functional micro-/nanomaterials, in particular, micro-/nanoimaging probes, have emerged as a hot topic in terms of both basic research and biomedical applications. More importantly, innovations and clinical translations of advanced imaging probes have substantially revolutionalized diagnostic techniques and therapy strategies addressing critical diseases. Therefore, this chapter presents a comprehensive description of the development history of biomedical imaging technology over the past decades and discusses various types of imaging probes corresponding to versatile imaging modalities.


  1. 1.
    Goodspeed, A.W.: Experiments on the Roentgen X-rays. Science 4, 236–237 (1896)CrossRefGoogle Scholar
  2. 2.
    Weissleder, R.: Molecular imaging: exploring the next frontier. Radiology 212, 609–614 (1999)CrossRefGoogle Scholar
  3. 3.
    Massoud, T.F., Gambhir, S.S.: Integrating noninvasive molecular imaging into molecular medicine: an evolving paradigm. Trends Mol. Med. 13, 183–191 (2007)CrossRefGoogle Scholar
  4. 4.
    Padmanabhan, P., Kumar, A., Kumar, S., Chaudhary, R.K., Gulyas, B.: Nanoparticles in practice for molecular-imaging applications: an overview. Acta Biomater. 41, 1 (2016)CrossRefGoogle Scholar
  5. 5.
    Weissleder, R., Pittet, M.J.: Imaging in the era of molecular oncology. Nature 452, 580–589 (2008)CrossRefGoogle Scholar
  6. 6.
    Appel, A.A., Anastasio, M.A., Larson, J.C., Brey, E.M.: Imaging challenges in biomaterials and tissue engineering. Biomaterials 34, 6615–6630 (2013)CrossRefGoogle Scholar
  7. 7.
    Lee, D.E., Koo, H., Sun, I.C., Ryu, J.H., Kim, K., Kwon, I.C.: Multifunctional nanoparticles for multimodal imaging and theragnosis. Chem. Soc. Rev. 41, 2656 (2012)CrossRefGoogle Scholar
  8. 8.
    Lu, F.M., Yuan, Z.: PET/SPECT molecular imaging in clinical neuroscience: recent advances in the investigation of CNS diseases. Quant. Imaging Med. Surg. 5, 433–447 (2015)Google Scholar
  9. 9.
    Trequesser, Q.L., Seznec, H., Delville, M.: Functionalized nanomaterials: their use as contrast agents in bioimaging: mono- and multimodal approaches. Nanotech. Rev. 2, 125–169 (2013)CrossRefGoogle Scholar
  10. 10.
    Herrling, P.L., Alex, M.M.D., Rudin, M.: Imaging in drug discovery and early clinical trials. J. Nucl. Med. 2006, 48 (1037)Google Scholar
  11. 11.
    Baker, M.: Whole-animal imaging: the whole picture. Nature 463, 977–980 (2010)CrossRefGoogle Scholar
  12. 12.
    Suetens, P.: Fundamentals of Medical Imaging, 2nd edn. Cambridge University Press, New York, USA (2009)CrossRefGoogle Scholar
  13. 13.
    Smith, L., Kuncic, Z., Ostrikov, K., Kumar, S.: Nanoparticles in cancer imaging and therapy. J. Nanomater. 2012, 10 (2012)CrossRefGoogle Scholar
  14. 14.
    Chi, X., Huang, D., Zhao, Z., Zhou, Z., Yin, Z., Gao, J.: Nanoprobes for invitro, diagnostics of cancer and infectious diseases. Biomaterials 33, 189–206 (2012)CrossRefGoogle Scholar
  15. 15.
    Li, K., Liu, B.: Polymer encapsulated conjugated polymer nanoparticles for fluorescence bioimaging. J. Mater. Chem. 22, 1257–1264 (2011)CrossRefGoogle Scholar
  16. 16.
    Mao, X., Xu, J., Cui, H.: Functional nanoparticles for magnetic resonance imaging. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 8, 814–841 (2016)CrossRefGoogle Scholar
  17. 17.
    Hung, A.H., Duch, M.C., Parigi, G., Rotz, M.W., Manus, L.M., Mastarone, D.J.: Mechanisms of gadographene-mediated proton spin relaxation. J. Phys. Chem. C 117, 16263–16273 (2013)CrossRefGoogle Scholar
  18. 18.
    Matosziuk, L.M., Leibowitz, J.H., Heffern, M.C., Macrenaris, K.W., Ratner, M.A., Meade, T.J.: Structural optimization of Zn(II)-activated magnetic resonance imaging probes. Inorg. Chem. 52, 12250 (2013)CrossRefGoogle Scholar
  19. 19.
    Jacobs, R.E., Papan, C., Ruffins, S., Tyszka, J.M., Fraser, S.E.: MRI: Volumetric imaging for vital imaging and atlas construction. Nat. Rev. Mol. Cell Biol. 4(Suppl. 1), SS10 (2003)Google Scholar
  20. 20.
    Artemov, D.: Molecular magnetic resonance imaging with targeted contrast agents. J. Cell. Biochem. 90, 518–524 (2003)CrossRefGoogle Scholar
  21. 21.
    Potter, K.: Magnetic resonance microscopy approaches to molecular imaging: sensitivity vs. specificity. J. Cell. Biochem. 87(Suppl. 39), 147–153 (2002)CrossRefGoogle Scholar
  22. 22.
    Aime, S., Cabella, C., Colombatto, S., Geninatti, C.S., Gianolio, E., Maggioni, F.: Insights into the use of paramagnetic Gd(III) complexes in MR-molecular imaging investigations. J. Magn. Reson. Imaging 16, 394–406 (2002)CrossRefGoogle Scholar
  23. 23.
    Caravan, P., Ellison, J.J., Mcmurry, T.J., Lauffer, R.B.: Gadolinium (III) chelates as MRI contrast agents: structure, dynamics, and applications. Cheminform 99, 2293 (1999)Google Scholar
  24. 24.
    Kabalka, G.W., Davis, M.A., Moss, T.H., Buonocore, E., Hubner, K., Holmberg, E.: Gadolinium-labeled liposomes containing various amphiphilic Gd-DTPA derivatives: targeted MRI contrast enhancement agents for the liver. Magn. Reson. Med. 19, 406–415 (1991)CrossRefGoogle Scholar
  25. 25.
    Guenoun, J., Koning, G.A., Doeswijk, G., Bosman, L., Wielopolski, P.A., Krestin, G.P.: Cationic Gd-DTPA liposomes for highly efficient labeling of mesenchymal stem cells and cell tracking with MRI. Cell Transplant. 21, 191–205 (2012)CrossRefGoogle Scholar
  26. 26.
    Cheng, Z., Thorek, D.L.J., Tsourkas, A.: Gd-conjugated dendrimer nanoclusters as a tumor-targeted T1 magnetic resonance imaging contrast agent. Angew. Chem. 49, 346–350 (2010)CrossRefGoogle Scholar
  27. 27.
    Huang, C.H., Nwe, K., Al, Z.A., Brechbiel, M.W., Tsourkas, A.: Biodegradable polydisulfide dendrimer nanoclusters as MRI contrast agents. ACS Nano 6, 9416 (2012)CrossRefGoogle Scholar
  28. 28.
    Yang, H., Santra, S., Walter, G., Holloway, P.: Gd(III)-functionalized fluorescent quantum dots as multimodal imaging probes. Adv. Mater. 18, 2890–2894 (2006)CrossRefGoogle Scholar
  29. 29.
    Yang, W., Guo, W., Gong, X., Zhang, B., Wang, S., Chen, N.: Facile synthesis of Gd-Cu-In-S/ZnS bimodal quantum dots with optimized properties for tumor targeted fluorescence/mr in vivo imaging. ACS Appl. Mater. Interfaces 7, 18759–18768 (2015)CrossRefGoogle Scholar
  30. 30.
    Vivero-Escoto, J.L., Taylor-Pashow, K.M.L., Huxford, R.C., Della Rocca, J., Okoruwa, C., An, H.: Multifunctional mesoporous silica nanospheres with cleavable Gd(III) chelates as mri contrast agents: synthesis, characterization, target-specificity and renal clearance. Small 7, 3519–3528 (2011)CrossRefGoogle Scholar
  31. 31.
    Huang, C.C., Tsai, C.Y., Sheu, H.S., Chuang, K.Y., Su, C.H., Jeng, U.S.: Enhancing transversal relaxation for magnetite nanoparticles in mr imaging using Gd3+-chelated mesoporous silica shells. ACS Nano 5, 3905–3916 (2011)CrossRefGoogle Scholar
  32. 32.
    Ghaghada, K.B., Ravoori, M., Sabapathy, D., Bankson, J., Kundra, V., Annapragada, A.: New dual mode gadolinium nanoparticle contrast agent for magnetic resonance imaging. PLoS ONE 4, e7628 (2009)CrossRefGoogle Scholar
  33. 33.
    Lu, J., Ma, S., Sun, J., Xia, C., Liu, C., Wang, Z.: Manganese ferrite nanoparticle micellar nanocomposites as MRI contrast agent for liver imaging. Biomaterials 30, 2919 (2009)CrossRefGoogle Scholar
  34. 34.
    Cassidy, P.J., Radda, G.K.: Molecular imaging perspectives. J. R. Soc. Interface 2, 133 (2005)CrossRefGoogle Scholar
  35. 35.
    Babes, L., Denizot, B., Tanguy, G., Le, J.J., Jallet, P.: Synthesis of iron oxide nanoparticles used as MRI contrast agents: a parametric study. J. Colloid Interface Sci. 212, 474 (1999)CrossRefGoogle Scholar
  36. 36.
    Gramiak, R., Shah, P.M.: Echocardiography of the aortic root. Invest. Radiol. 3, 356–366 (1968)CrossRefGoogle Scholar
  37. 37.
    Feinstein, S.B., Cheirif, J., Tencate, F.J., Silverman, P.R., Heidenreich, P.A., Dick, C., Desir, R.M., Armstrong, W.F., Quinones, M.A., Shah, P.M.: Safety and efficacy of a new transpulmonary ultrasound contrast agent: initial multicenter clinical results. J. Am. Coll. Cardiol. 16, 316–324 (1990)CrossRefGoogle Scholar
  38. 38.
    Kaneko, O.F., Willmann, J.K.: Ultrasound for molecular imaging and therapy in cancer. Quant. Imaging Med. Surg. 2, 87–97 (2012)Google Scholar
  39. 39.
    Appis, A.W., Tracy, M.J., Feinstein, S.B.: Update on the safety and efficacy of commercial ultrasound contrast agents in cardiac applications. Echo Res. Pract. 2, R55–R62 (2015)CrossRefGoogle Scholar
  40. 40.
    Unger, E., Porter, T., Lindner, J., Grayburn, P.: Cardiovascular drug delivery with ultrasound and microbubbles. Adv. Drug Deliv. Rev. 72, 110–126 (2014)CrossRefGoogle Scholar
  41. 41.
    Lindner, J.R.: Microbubbles in medical imaging: current applications and future directions. Nat. Rev. Drug Discov. 3, 527–532 (2004)CrossRefGoogle Scholar
  42. 42.
    Keller, M.W., Glasheen, W., Kaul, S.: Albunex: a safe and effective commercially produced agent for myocardial contrast echocardiography. J. Am. Soc. Echocardiogr. 2, 48–52 (1989)CrossRefGoogle Scholar
  43. 43.
    Podell, S., Burrascano, C., Gaal, M., Golec, B., Maniquis, J., Mehlhaff, P.: Physical and biochemical stability of optison, an injectable ultrasound contrast agent. Biotech. Appl. Biochem. 30, 213–223 (1999)Google Scholar
  44. 44.
    Goertz, D.E., Jong, N.D., Steen, A.V.D.: Attenuation and size distribution measurements of definity™ and manipulated definity™ populations. Ultrasound Med. Biol. 33, 1376–1388 (2007)CrossRefGoogle Scholar
  45. 45.
    Schneider, M.: Sonovue, a new ultrasound contrast agent. Eur. Radiol. 9(Suppl. 3), 347–348 (1999)CrossRefGoogle Scholar
  46. 46.
    Sontum, P.C.: Physicochemical characteristics of sonazoid, a new contrast agent for ultrasound imaging. Ultrasound Med. Biol. 34, 824–833 (2008)CrossRefGoogle Scholar
  47. 47.
    Bhutani, M.S., Hoffman, B.J., Van, V.A., Hawes, R.H.: Contrast-enhanced endoscopic ultrasonography with galactose microparticles: SHU508 a (Levovist). Endoscopy 29, 635–639 (1997)CrossRefGoogle Scholar
  48. 48.
    Hoff, L., Sontum, P.C., Hoff, B.: Acoustic properties of shell-encapsulated, gas-filled ultrasound contrast agents. Ultrason. Symp. Proc. 2, 1441–1444 (1996)Google Scholar
  49. 49.
    Kiessling, F., Mertens, M.E., Grimm, J., Lammers, T.: Nanoparticles for imaging: top or flop? Radiology 273, 10 (2014)CrossRefGoogle Scholar
  50. 50.
    Paefgen, V., Doleschel, D., Kiessling, F.: Evolution of contrast agents for ultrasound imaging and ultrasound-mediated drug delivery. Front. Pharm. 6, 197 (2015)CrossRefGoogle Scholar
  51. 51.
    Wei, S., Fu, N., Sun, Y., Yang, Z., Lei, L., Huang, P.: Targeted contrast-enhanced ultrasound imaging of angiogenesis in an orthotopic mouse tumor model of renal carcinoma. Ultrasound Med. Biol. 40, 1250–1259 (2014)CrossRefGoogle Scholar
  52. 52.
    Hu, Q., Wang, X.Y., Kang, L.K., Wei, H.M., Xu, C.M., Wang, T.: RGD-targeted ultrasound contrast agent for longitudinal assessment of Hep2 tumor angiogenesis in vivo. PLoS ONE 11, e0149075 (2016)CrossRefGoogle Scholar
  53. 53.
    Yuan, B., Rychak, J.: Tumor functional and molecular imaging utilizing ultrasound and ultrasound-mediated optical techniques. Am. J. Pathology 182, 305 (2013)CrossRefGoogle Scholar
  54. 54.
    Xu, J.S., Huang, J., Qin, R., Hinkle, G.H., Povoski, S.P., Martin, E.W.: Synthesizing and binding dual-mode poly (lactic-co-glycolic acid) (PLGA) nanobubbles for cancer targeting and imaging. Biomaterials 31, 1716–1722 (2009)CrossRefGoogle Scholar
  55. 55.
    Campbell, R.B.: Tumor physiology and delivery of nano pharmaceuticals. Anti-Cancer Agents Med. Chem. 6, 503–512 (2006)CrossRefGoogle Scholar
  56. 56.
    Kang, E., Min, H.S., Lee, J.: Nanobubbles from gas-generating polymeric nanoparticles: ultrasound imaging of living subjects. Angew. Chem. 49, 524–528 (2010)CrossRefGoogle Scholar
  57. 57.
    Min, K.H., Min, H.S., Lee, H.J., Park, D.J., Yhee, J.Y., Kim, K.: pH-controlled gas-generating mineralized nanoparticles: a theranostic agent for ultrasound imaging and therapy of cancers. ACS Nano 9, 134–145 (2015)CrossRefGoogle Scholar
  58. 58.
    Haller, C., Hizoh, I.: The cytotoxicity of iodinated radiocontrast agents on renal cells in vitro. Invest. Radiol. 39, 149 (2004)CrossRefGoogle Scholar
  59. 59.
    Liu, Y., Ai, K., Lu, L.: Nanoparticulate X-ray computed tomography contrast agents: from design validation to in vivo applications. Acc. Chem. Res. 45, 1817–1827 (2012)CrossRefGoogle Scholar
  60. 60.
    Kong, W.H., Lee, W.J., Cui, Z.Y., Bae, K.H., Park, T.G., Kim, J.H.: Nanoparticulate carrier containing water-insoluble iodinated oil as a multifunctional contrast agent for computed tomography imaging. Biomaterials 28, 5555–5561 (2007)CrossRefGoogle Scholar
  61. 61.
    Badea, C.T., Athreya, K.K., Espinosa, G., Clark, D., Ghafoori, A.P., Li, Y.: Computed tomography imaging of primary lung cancer in mice using a liposomal-iodinated contrast agent. PLoS ONE 7, e34496 (2012)CrossRefGoogle Scholar
  62. 62.
    Kim, D., Park, S., Lee, J.H., Jeong, Y.Y., Jon, S.: Antibiofouling polymer-coated gold nanoparticles as a contrast agent for in vivo X-ray computed tomography imaging. J. Am. Chem. Soc. 129, 7661 (2007)CrossRefGoogle Scholar
  63. 63.
    Xiao, M., Nyagilo, J., Arora, V., Kulkarni, P., Xu, D., Sun, X.: Gold nanotags for combined multi-colored Raman spectroscopy and X-ray computed tomography. Nanotechnology 21, 035101 (2010)CrossRefGoogle Scholar
  64. 64.
    Huo, D., Ding, J., Cui, Y.X., Xia, L.Y., Li, H., He, J.: X-ray CT and pneumonia inhibition properties of gold–silver nanoparticles for targeting MRSA, induced pneumonia. Biomaterials 35, 7032 (2014)CrossRefGoogle Scholar
  65. 65.
    Rabin, O., Manuel, P.J., Grimm, J., Wojtkiewicz, G., Weissleder, R.: An X-ray computed tomography imaging agent based on long-circulating bismuth sulphide nanoparticles. Nat. Mater. 5, 118–122 (2006)CrossRefGoogle Scholar
  66. 66.
    Kinsella, J.M., Jimenez, R.E., Karmali, P.P., Rush, A.M., Kotamraju, V.R., Gianneschi, N.C.: X-ray computed tomography imaging of breast cancer by using targeted peptide-labeled bismuth sulfide nanoparticles. Angew. Chem. 50, 12308 (2011)CrossRefGoogle Scholar
  67. 67.
    Jin, Y., Li, Y., Ma, X., Zha, Z., Shi, L., Tian, J.: Encapsulating tantalum oxide into polypyrrole nanoparticles for X-ray ct/photoacoustic bimodal imaging-guided photothermal ablation of cancer. Biomaterials 35, 5795–5804 (2014)CrossRefGoogle Scholar
  68. 68.
    Ai, K., Liu, Y., Liu, J., Yuan, Q., He, Y., Lu, L.: Large-scale synthesis of Bi2S3 nanodots as a contrast agent for in vivo X-ray computed tomography imaging. Adv. Mater. 23, 4886–4891 (2011)CrossRefGoogle Scholar
  69. 69.
    Cherry, S.R.: The 2006 Henry N. Wagner lecture: of mice and men (and positrons)–advances in PET imaging technology. J. Nucl. Med. 47, 1735–1745 (2006)Google Scholar
  70. 70.
    Stockhofe, K., Postema, J.M., Schieferstein, H., Ross, T.L.: Radiolabeling of nanoparticles and polymers for pet imaging. Pharmaceuticals 7, 392–418 (2014)CrossRefGoogle Scholar
  71. 71.
    Herth, M.M., Barz, M., Moderegger, D., Allmeroth, M., Jahn, M., Thews, O.: Radioactive labeling of defined HPMA-based polymeric structures using [18F]fetos for in vivo imaging by positron emission tomography. Biomacromol 10, 1697–1703 (2009)CrossRefGoogle Scholar
  72. 72.
    Liu, Q., Sun, Y., Li, C., Zhou, J., Li, C., Yang, T.: 18F-labeled magnetic-upconversion nanophosphors via rare-earth cation-assisted ligand assembly. ACS Nano 5, 3146–3157 (2011)CrossRefGoogle Scholar
  73. 73.
    Sang, B.L., Kim, H.L., Jeong, H.J., Lim, S.T., Sohn, M.H., Kim, D.W.: Mesoporous silica nanoparticle pretargeting for pet imaging based on a rapid bioorthogonal reaction in a living body. Angew. Chem. 52, 10549 (2013)CrossRefGoogle Scholar
  74. 74.
    Allmeroth, M., Moderegger, D., Gundel, D., Buchholz, H.G., Mohr, N., Koynov, K.: Pegylation of HPMA-based block copolymers enhances tumor accumulation in vivo: a quantitative study using radiolabeling and positron emission tomography. J. Control. Release 172, 77–85 (2013)CrossRefGoogle Scholar
  75. 75.
    Yang, X., Hong, H., Grailer, J.J., Rowland, I.J., Javadi, A., Hurley, S.A.: cRGD-functionalized, DOX-conjugated, and Cu-labeled superparamagnetic iron oxide nanoparticles for targeted anticancer drug delivery and PET/MR imaging. Biomaterials 32, 4151 (2011)CrossRefGoogle Scholar
  76. 76.
    Pressly, E.D., Pierce, R.A., Connal, L.A., Hawker, C.J., Liu, Y.: Nanoparticle PET/CT imaging of natriuretic peptide clearance receptor in prostate cancer. Bioconjug. Chem. 24, 196 (2013)CrossRefGoogle Scholar
  77. 77.
    Locatelli, E., Gil, L., Israel, L.L., Passoni, L., Naddaka, M., Pucci, A.: Biocompatible nanocomposite for PET/MRI hybrid imaging. Int. J. Nanomed. 7, 6021–6033 (2012)Google Scholar
  78. 78.
    Kim, S.M., Chae, M.K., Yim, M.S., Jeong, I.H., Cho, J., Lee, C.: Hybrid PET/MR imaging of tumors using an oleanolic acid-conjugated nanoparticle. Biomaterials 34, 8114 (2013)CrossRefGoogle Scholar
  79. 79.
    Lee, D.E., Na, J.H., Lee, S., Kang, C.M., Kim, H.N., Han, S.J.: Facile method to radiolabel glycol chitosan nanoparticles with (64)Cu via copper-free click chemistry for micropet imaging. Mol. Pharm. 10, 2190 (2013)CrossRefGoogle Scholar
  80. 80.
    Liu, Y., Welch, M.J.: Nanoparticles labeled with positron emitting nuclides: advantages, methods, and applications. Bioconjug. Chem. 23, 671–682 (2012)CrossRefGoogle Scholar
  81. 81.
    Zeng, D., Lee, N.S., Liu, Y., Zhou, D., Dence, C.S., Wooley, K.L.: 64Cu core-labeled nanoparticles with high specific activity via metal-free click chemistry. ACS Nano 6, 5209–5219 (2012)CrossRefGoogle Scholar
  82. 82.
    Zhao, Y., Sultan, D., Detering, L., Cho, S., Sun, G., Pierce, R.: Copper-64-alloyed gold nanoparticles for cancer imaging: improved radiolabel stability and diagnostic accuracy. Angew. Chem. 53, 156–159 (2013)CrossRefGoogle Scholar
  83. 83.
    Wang, J., Mi, P., Lin, G., Wang, Y.X., Liu, G., Chen, X.: Imaging guided delivery of RNAi for anticancer treatment. Adv. Drug Deliv. Rev. 104, 44–60 (2016)CrossRefGoogle Scholar
  84. 84.
    Black, K.C.L., Akers, W.J., Sudlow, G., Xu, B., Laforest, R., Achilefu, S.: Dual-radiolabeled nanoparticle SPECT probes for bioimaging. Nanoscale 7, 440–444 (2015)CrossRefGoogle Scholar
  85. 85.
    Chrastina, A., Schnitzer, J.E.: Iodine-125 radiolabeling of silver nanoparticles for in vivo SPECT imaging. Int. J. Nanomed. 5, 653–659 (2010)Google Scholar
  86. 86.
    Perrier, M., Busson, M., Massasso, G., Long, J., Boudousq, V., Pouget, J.P.: 201Tl+-labelled prussian blue nanoparticles as contrast agents for SPECT scintigraphy. Nanoscale 6, 13425 (2014)CrossRefGoogle Scholar
  87. 87.
    Karina, B.H.B., Maeda, O.J.M., Roberta, L.G., Batista, A.C., Coral, D.O.C.E., Ehara, W.M.A.: Molecular markers for breast cancer: prediction on tumor behavior. Dis. Markers 513158 (2014)Google Scholar
  88. 88.
    Zhao, Y., Pang, B., Luehmann, H., Detering, L., Yang, X., Sultan, D.: Gold nanoparticles doped with (199) au atoms and their use for targeted cancer imaging by SPECT. Adv. Healthc. Mater. 5, 928 (2016)CrossRefGoogle Scholar
  89. 89.
    Piwnica-Worms, D.: On in vivo imaging in cancer. Cold Spring Harbor Persp. Biol. 2, a003848 (2010)Google Scholar
  90. 90.
    Oleinikov, V.A.: Semiconductor fluorescent nanocrystals (quantum dots) in biological biochips. Bioorg. Khim. 37, 171–189 (2011)Google Scholar
  91. 91.
    Chan, W.C., Nie, S.: Quantum dot bioconjugates for ultrasensitive nonisotopic detection. Science 1998, 281 (2016)Google Scholar
  92. 92.
    Bruchez, M., Moronne, M., Gin, P.: Semiconductor nanocrystals as fluorescent biological labels. Science 281, 2013–2016 (1998)CrossRefGoogle Scholar
  93. 93.
    Valizadeh, A., Mikaeili, H., Samiei, M., Farkhani, S.M., Zarghami, N., Kouhi, M.: Quantum dots: synthesis, bioapplications, and toxicity. Nanoscale Res. Lett. 7, 480 (2012)CrossRefGoogle Scholar
  94. 94.
    Michalet, X., Pinaud, F.F., Bentolila, L.A., Tsay, J.M., Doose, S., Li, J.J.: Quantum dots for live cells, in vivo imaging, and diagnostics. Science 307, 538 (2005)CrossRefGoogle Scholar
  95. 95.
    Dubertret, B., Skourides, P., Norris, D.J., Noireaux, V., Brivanlou, A.H., Libchaber, A.: In vivo imaging of quantum dots encapsulated in phospholipid micelles. Science 298, 1759 (2002)CrossRefGoogle Scholar
  96. 96.
    Larson, D.R., Zipfel, W.R., Williams, R.M., Clark, S.W., Bruchez, M.P., Wise, F.W.: Water-soluble quantum dots for multiphoton fluorescence imaging in vivo. Science 300, 1434 (2003)CrossRefGoogle Scholar
  97. 97.
    Gao, X., Yang, L., Petros, J.A., Marshall, F.F., Simons, J.W., Nie, S.: In vivo, molecular and cellular imaging with quantum dots. Curr. Opin. Biotech. 16, 63–72 (2005)CrossRefGoogle Scholar
  98. 98.
    Ballou, B., Lagerholm, B.C., Ernst, L.A., Bruchez, M.P., Waggoner, A.S.: Noninvasive imaging of quantum dots in mice. Bioconjug. Chem. 15, 79–86 (2004)CrossRefGoogle Scholar
  99. 99.
    Cai, W., Shin, D., Chen, K., Olivier, G., Cao, Q., Wang, X.: Peptide-labeled near-infrared quantum dots for imaging tumor vasculature in living subjects. Nano Lett. 6, 669 (2006)CrossRefGoogle Scholar
  100. 100.
    Gao, X., Cui, Y., Levenson, R.M., Chung, L.W., Nie, S.: In vivo cancer targeting and imaging with semiconductor quantum dots. Nat. Biotech. 22, 969 (2004)CrossRefGoogle Scholar
  101. 101.
    Lim, S.Y., Shen, W., Gao, Z.: Carbon quantum dots and their applications. Chem. Soc. Rev. 44, 362–381 (2015)CrossRefGoogle Scholar
  102. 102.
    Liu, R., Wu, D., Liu, S., Koynov, K., Knoll, W., Li, Q.: An aqueous route to multicolor photoluminescent carbon dots using silica spheres as carriers. Angew. Chem. 48, 4598–4601 (2010)CrossRefGoogle Scholar
  103. 103.
    Baker, S., Baker, G.: Luminescent carbon nanodots: emergent nanolights. Angew. Chem. 49, 6726–6744 (2010)CrossRefGoogle Scholar
  104. 104.
    Liu, Z., Chen, W., Li, Y., Xu, Q.: Integrin αvβ3-targeted C-dot nanocomposites as multifunctional agents for cell targeting and photoacoustic imaging of superficial malignant tumors. Anal. Chem. 88, 11955 (2016)CrossRefGoogle Scholar
  105. 105.
    Yang, S.T., Cao, L., Luo, P.G., Lu, F., Wang, X., Wang, H.: Carbon dots for optical imaging in vivo. J. Am. Chem. Soc. 131, 11308 (2009)CrossRefGoogle Scholar
  106. 106.
    Wu, L., Luderer, M., Yang, X., Swain, C., Zhang, H., Nelson, K.: Surface passivation of carbon nanoparticles with branched macromolecules influences near infrared bioimaging. Theranostics 3, 677–686 (2013)CrossRefGoogle Scholar
  107. 107.
    Huang, Y.F., Zhou, X., Zhou, R., Zhang, H., Kang, K.B., Zhao, M.: One-pot synthesis of highly luminescent carbon quantum dots and their nontoxic ingestion by zebrafish for in vivo imaging. Chemistry 20, 5640 (2014)CrossRefGoogle Scholar
  108. 108.
    Zheng, M., Ruan, S., Liu, S., Sun, T., Qu, D., Zhao, H.: Self-targeting fluorescent carbon dots for diagnosis of brain cancer cells. ACS Nano 9, 11455 (2015)CrossRefGoogle Scholar
  109. 109.
    Ostadhossein, F., Pan, D.: Functional carbon nanodots for multiscale imaging and therapy. Wiley Intdiscip. Rev. Nanomed. Nanobiotech. 9, e1436 (2017). Scholar
  110. 110.
    Smith, B.R., Gambhir, S.S.: Nanomaterials for in vivo imaging. Chem. Rev. 117, 901 (2017)CrossRefGoogle Scholar
  111. 111.
    Liu, T., Shi, S., Liang, C., Shen, S., Cheng, L., Wang, C.: Iron oxide decorated MoS2 nanosheets with double PEGylation for chelator-free radiolabeling and multimodal imaging guided photothermal therapy. ACS Nano 9, 950–960 (2015)CrossRefGoogle Scholar
  112. 112.
    Fang, C., Zhang, M.: Nanoparticle-based theragnostics: integrating diagnostic and therapeutic potentials in nanomedicine. J. Control. Release 146, 2 (2010)CrossRefGoogle Scholar
  113. 113.
    Mccarthy, J.R., Weissleder, R.: Multifunctional magnetic nanoparticles for targeted imaging and therapy. Adv. Drug Deliv. Rev. 60, 1241–1251 (2008)CrossRefGoogle Scholar
  114. 114.
    Hong, G., Diao, S., Antaris, A.L., Dai, H.: Carbon nanomaterials for biological imaging and nanomedicinal therapy. Chem. Rev. 115, 10816 (2015)CrossRefGoogle Scholar
  115. 115.
    Huang, X., Elsayed, I.H., Qian, W., Elsayed, M.A.: Cancer cell imaging and photothermal therapy in the near-infrared region by using gold nanorods. J. Am. Chem. Soc. 128, 2115 (2006)CrossRefGoogle Scholar
  116. 116.
    Everts, M., Saini, V., Leddon, J.L., Kok, R.J., Stoff-Khalili, M., Preuss, M.A., Milican, C.L., Perkins, G., Brown, J.M., Bagaria, H., Nikles, D.E., Johnson, D.T., Zharov, V.P., Curiel, D.T.: Covalently linked au nanoparticles to a viral vector: potential for combined photothermal and gene cancer therapy. Nano Lett. 6, 587 (2006)CrossRefGoogle Scholar
  117. 117.
    Khlebtsov, B., Zharov, V., Melnikov, A., Tuchin, V., Khlebtsov, N.: Optical amplification of photothermal therapy with gold nanoparticles and nanoclusters. Nanotechnology 17, 5167 (2006)CrossRefGoogle Scholar
  118. 118.
    Zerda, A.D.L., Zavaleta, C., Keren, S., Vaithilingam, S., Bodapati, S., Liu, Z.: Carbon nanotubes as photoacoustic molecular imaging agents in living mice. Nat. Nanotech. 3, 557–562 (2008)CrossRefGoogle Scholar
  119. 119.
    Chamberland, D.L., Agarwal, A., Kotov, N., Brian, F.J., Carson, P.L., Wang, X.: Photoacoustic tomography of joints aided by an etanercept-conjugated gold nanoparticle contrast agent-an ex vivo preliminary rat study. Nanotechnology 19, 095101 (2008)CrossRefGoogle Scholar
  120. 120.
    Wang, Y., Xie, X., Wang, X., Ku, G., Gill, K.L., O’Neal, D.P., Stoica, G., Wang, L.V.: Photoacoustic tomography of a nanoshell contrast agent in the in vivo rat brain. Nano Lett. 4, 1689–1692 (2004)CrossRefGoogle Scholar
  121. 121.
    Agarwal, A., Huang, S.W., Odonnell, M., Day, K.C.: Targeted gold nanorod contrast agent for prostate cancer detection by photoacoustic imaging. J. Appl. Phys. 102, 064701-064701-4 (2007)Google Scholar
  122. 122.
    Kim, J.W., Galanzha, E.I., Shashkov, E.V., Moon, H.M., Zharov, V.P.: Golden carbon nanotubes as multimodal photoacoustic and photothermal high-contrast molecular agents. Nat. Nanotech. 4, 688–694 (2009)CrossRefGoogle Scholar
  123. 123.
    Sheng, Z., Hu, D., Xue, M., He, M., Gong, P., Cai, L.: Indocyanine green nanoparticles for theranostic applications. Nano-Micro Lett. 5, 145–150 (2013)CrossRefGoogle Scholar
  124. 124.
    Sheng, Z., Hu, D., Zheng, M., Zhao, P., Liu, H., Gao, D.: Smart human serum albumin-indocyanine green nanoparticles generated by programmed assembly for dual-modal imaging-guided cancer synergistic phototherapy. ACS Nano 8, 12310 (2014)CrossRefGoogle Scholar
  125. 125.
    Savic, R., Luo, L., Eisenberg, L., Maysinger, D.: Micellar nanocontainers distribute to definedcytoplasmic organelles. Science 300, 615–618 (2003)CrossRefGoogle Scholar
  126. 126.
    Torchilin, V.P.: Micellar nanocarriers: pharmaceutical perspectives. Pharm. Res. 24, 1 (2007)CrossRefGoogle Scholar
  127. 127.
    Miura, Y., Tsuji, A.B., Sugyo, A., Sudo, H., Aoki, I., Inubushi, M.: Polymeric micelle platform for multimodal tomographic imaging to detect scirrhous gastric cancer. ACS Biomater. Sci. Eng. 1, 1067–1076 (2015)CrossRefGoogle Scholar
  128. 128.
    Lu, A.H., Salabas, E.L., Schuth, F.: Magnetic nanoparticles: synthesis, protection, functionalization, and application. Angew. Chem. Int. Ed. 46, 1222 (2007)CrossRefGoogle Scholar
  129. 129.
    Frimpong, R.A., Hilt, J.Z.: Magnetic nanoparticles in biomedicine: synthesis, functionalization and applications. Nanomedicine 5, 1401 (2010)CrossRefGoogle Scholar
  130. 130.
    Sinha, R., Kim, G.J., Nie, S., Shin, D.M.: Nanotechnology in cancer therapeutics: bioconjugated nanoparticles for drug delivery. Mol. Cancer Ther. 2006, 5 (1909)Google Scholar
  131. 131.
    Li, J., Wang, Y., Liang, R., An, X., Wang, K., Shen, G.: Recent advances in targeted nanoparticles drug delivery to melanoma. Nanomed. Nanotech. Biol. Med. 11, 769–794 (2015)CrossRefGoogle Scholar
  132. 132.
    Sailor, M.J., Park, J.H.: Hybrid nanoparticles for detection and treatment of cancer. Adv. Mater. 24, 3779 (2012)CrossRefGoogle Scholar
  133. 133.
    Smith, B.R., Kempen, P., Bouley, D., Xu, A., Liu, Z., Melosh, N., Dai, H., Sinclair, R., Gambhir, S.S.: Shape matters: intravital microscopy reveals surprising geometrical dependence for nanoparticles in tumor models of extravasation. Nano Lett. 12, 3369–3377 (2012)CrossRefGoogle Scholar
  134. 134.
    Lobatto, M.E., Calcagno, C., Millon, A., Senders, M.L., Fay, F., Robson, P.M.: Atherosclerotic plaque targeting mechanism of long-circulating nanoparticles established by multimodal imaging. ACS Nano 9, 1837–1847 (2015)CrossRefGoogle Scholar
  135. 135.
    Prabhakar, U., Maeda, H., Jain, R.K., Sevickmuraca, E.M., Zamboni, W., Farokhzad, O.C.: Challenges and key considerations of the enhanced permeability and retention effect for nanomedicine drug delivery in oncology. Cancer Res. 73, 2412 (2013)CrossRefGoogle Scholar
  136. 136.
    Toy, R., Bauer, L., Hoimes, C., Ghaghada, K.B., Karathanasis, E.: Targeted nanotechnology for cancer imaging. Adv. Drug Deliv. Rev. 76, 79 (2014)CrossRefGoogle Scholar
  137. 137.
    Louie, A.: Multimodality imaging probes: design and challenges. Chem. Rev. 110, 3146–3195 (2010)CrossRefGoogle Scholar
  138. 138.
    Kim, J., Park, S., Lee, J.E., Jin, S.M., Lee, J.H., Lee, I.S.: Designed fabrication of multifunctional magnetic gold nanoshells and their application to magnetic resonance imaging and photothermal therapy. Angew. Chem. 45, 7754–7758 (2006)CrossRefGoogle Scholar
  139. 139.
    Kelkar, S.S., Reineke, T.M.: Theranostics: combining imaging and therapy. Bioconjug. Chem. 22, 1879–1903 (2011)CrossRefGoogle Scholar
  140. 140.
    Kim, J., Kim, H.S., Lee, N., Kim, T., Kim, H., Yu, T.: Multifunctional uniform nanoparticles composed of a magnetite nanocrystal core and a mesoporous silica shell for magnetic resonance and fluorescence imaging and for drug delivery. Angew. Chem. 47, 8438 (2008)CrossRefGoogle Scholar
  141. 141.
    Kelkar, S.S., Reineke, T.M.: Theranostics: combining imaging and therapy. Bioconjug. Chem. 2011, 22 (1879)Google Scholar

Copyright information

©  Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  • Waner Chen
    • 1
  • Wei Ma
    • 2
  • Chunpeng Zou
    • 3
  • Yan Yang
    • 3
  • Gaoyi Yang
    • 4
  • Li Liu
    • 5
    • 6
  • Zhe Liu
    • 7
    • 1
    • 3
    • 8
    Email author
  1. 1.Wenzhou Institute of Biomaterials and EngineeringChinese Academy of SciencesWenzhouPeople’s Republic of China
  2. 2.Institute for Materials Chemistry and Engineering (IMCE)Kyushu UniversityFukuokaJapan
  3. 3.The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical UniversityWenzhouPeople’s Republic of China
  4. 4.Hangzhou Red Cross HospitalHangzhouPeople’s Republic of China
  5. 5.Institute of ChemistryChinese Academy of Sciences‎BeijingPeople’s Republic of China
  6. 6.Beijing National Laboratory for Molecular SciencesBeijingPeople’s Republic of China
  7. 7.Academy of Medical Engineering and Translational MedicineTianjin UniversityTianjinPeople’s Republic of China
  8. 8.Wenzhou Institute of Biomaterials and EngineeringWenzhou Medical UniversityWenzhouPeople’s Republic of China

Personalised recommendations