Reflection Methods for Inverse Problems with Applications to Protein Conformation Determination
Abstract
The Douglas–Rachford reflection method is a general-purpose algorithm useful for solving the feasibility problem of finding a point in the intersection of finitely many sets. In this chapter, we demonstrate that applied to a specific problem, the method can benefit from heuristics specific to said problem which exploit its special structure. In particular, we focus on the problem of protein conformation determination formulated within the framework of matrix completion, as was considered in a recent paper of the present authors.
Keywords
Reflection methods Inverse problems Protein conformationNotes
Acknowledgements
The authors wish to thank Dr. Alister Page for introducing us to the bulk structure determination problem and for kindly sharing the PAN data set. The work of JMB is supported in part by the Australian Research Council. This work was performed during MKT’s candidature at the University of Newcastle where he was supported in part by an Australian Postgraduate Award.
References
- 1.Aragón Artacho, F., Borwein, J.: Global convergence of a non-convex Douglas-Rachford iteration. J. Glob. Optim. 57(3), 753–769 (2013)MathSciNetCrossRefMATHGoogle Scholar
- 2.Aragón Artacho, F., Borwein, J., Tam, M.: Recent results on Douglas–Rachford methods for combinatorial optimization problems. J. Optim. Theory Appl. (in press, 2013)Google Scholar
- 3.Aragón Artacho, F., Borwein, J., Tam, M.: Douglas-Rachford feasibility methods for matrix completion problems. ANZIAM J. 55(4), 299–326 (2014)MathSciNetCrossRefMATHGoogle Scholar
- 4.Bauschke, H., Bello Cruz, J., Nghia, T., Phan, H., Wang, X.: The rate of linear convergence of the Douglas-Rachford algorithm for subspaces is the cosine of the Friedrichs angle. J. Approx. Theory 185, 63–79 (2014)MathSciNetCrossRefMATHGoogle Scholar
- 5.Bauschke, H., Combettes, P.: Convex analysis and monotone operator theory in Hilbert space. Springer, New York (2011)CrossRefMATHGoogle Scholar
- 6.Bauschke, H., Combettes, P., Luke, D.: Finding best approximation pairs relative to two closed convex sets in Hilbert spaces. J. Approx. Theory 127(2), 178–192 (2004)MathSciNetCrossRefMATHGoogle Scholar
- 7.Bauschke, H., Noll, D., Phan, H.: Linear and strong convergence of algorithms involving averaged nonexpansive operators. J. Math. Anal. Appl. 421(1), 1–20 (2015)MathSciNetCrossRefMATHGoogle Scholar
- 8.Berman, H., Westbrook, J., Feng, Z., Gilliland, G., Bhat, T., Weissig, H., Shindyalov, I.N., Bourne, P.E.: The protein data bank. Nucleic Acids Res. 28, 235–242 (2000)CrossRefGoogle Scholar
- 9.Bondi, A.: Van der Waals Volumes and Radii. J. Phys. Chem. 68(3), 441–51 (1964)CrossRefGoogle Scholar
- 10.Borwein, J., Lewis, A.: Convex analysis and nonlinear optimization. Springer (2006)Google Scholar
- 11.Borwein, J., Sims, B.: The Douglas–Rachford algorithm in the absence of convexity. In: Fixed-Point Algorithms for Inverse Problems in Science and Engineering, pp. 93–109. Springer (2011)Google Scholar
- 12.Borwein, J., Tam, M.: The cyclic Douglas-Rachford method for inconsistent feasibility problems. J. Nonlinear Convex Anal. 16(4), 537–584 (2015)MathSciNetMATHGoogle Scholar
- 13.Borwein, J., Tam, M.: A cyclic Douglas-Rachford iteration scheme. J. Optim. Theory Appl. 160(1), 1–29 (2014)MathSciNetCrossRefMATHGoogle Scholar
- 14.Borwein, J., Zhu, Q.: Techniques of Variational Analysis, CMS Books in Mathematics, vol. 20. Springer-Verlag, New York (2005, Paperback, 2010)Google Scholar
- 15.Berman, A., Shaked-Monderer, N.: Completely positive matrices. World Scientific, Singapore (2003)CrossRefMATHGoogle Scholar
- 16.Cegielski, A.: Iterative methods for fixed point problems in Hilbert space. Lecture Notes in Mathematics, vol. 2057. Springer, London (2012)Google Scholar
- 17.Dattorro, J.: Convex optimization & Euclidean distance geometry. Meboo Publishing USA (2005)Google Scholar
- 18.Elser, V., Rankenburg, I., Thibault, P.: Searching with iterated maps. Proc. Natl. Acad. Sci. 104(2), 418–423 (2007)MathSciNetCrossRefMATHGoogle Scholar
- 19.Gravel, S., Elser, V.: Divide and concur: A general approach to constraint satisfaction. Phys. Rev. E 78(3), 036,706 (2008)Google Scholar
- 20.Hayden, T., Wells, J.: Approximation by matrices positive semidefinite on a subspace. Linear Algebra Appl. 109, 115–130 (1988)MathSciNetCrossRefMATHGoogle Scholar
- 21.Hesse, R., Luke, D.: Nonconvex notions of regularity and convergence of fundamental algorithms for feasibility problems. SIAM J. Optim. 23(4), 2397–2419 (2013)MathSciNetCrossRefMATHGoogle Scholar
- 22.Seo, J., Kim, J.-K., Ryu, J., Lavor, C., Mucherino, A., Kim, D.-S.: BetaMDGP: Protein structure determination algorithm based on the Beta-complex. Trans. Comput. Sc. 8360, 130–155 (2014)Google Scholar