Skip to main content

Principle of Dielectric-Based Anti-reflection and Light Trapping

  • Chapter
  • First Online:
Anti-reflection and Light Trapping in c-Si Solar Cells

Part of the book series: Green Energy and Technology ((GREEN))

Abstract

This chapter explores the interference-based anti-reflection and light trapping methodologies for solar cell applications. When two monochromatic coherent waves having constant phase difference meet, the interference phenomena is observed. Detailed analysis of interference-based anti-reflection and principle behind the observed phenomenon has been covered. Starting from simple reflection and interference of the reflected light from single dielectric coating, the phenomenon of anti-reflection has been covered and extended to multilayer anti-reflection coating applications. The thickness and refractive index of a dielectric layers are the two most important parameters of concerns for their use as anti-reflection coatings. Correlation with reflectance minima with wavelength and dielectric layer parameters has been presented. Experimental measurements of reflectance for various suitable anti-reflection coatings have also been presented and compared with the theoretical results. At the end, benefits and limitations of dielectric-based reflectance have been discussed in context of c-Si solar cells.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aberle AG (2001) Overview on SiN surface passivation of crystalline silicon solar cells. Sol Energy Mater Sol Cells 65:239–248. doi:10.1016/S0927-0248(00)00099-4

    Article  Google Scholar 

  • Choi P-H, Kim H-J, Baek D-H, Choi B-D (2012) A study on the electrical characteristic analysis of c-Si solar cell diodes. JSTS J Semicond Technol Sci 12:59–65. doi:10.5573/JSTS.2012.12.1.59

    Article  Google Scholar 

  • Davis KO, Jiang K, Habermann D, Schoenfeld WV (2015) Tailoring the optical properties of APCVD titanium oxide films for all-oxide multilayer antireflection coatings. IEEE J Photovolt 5:1265–1270. doi:10.1109/JPHOTOV.2015.2437272

    Article  Google Scholar 

  • Duttagupta S, Ma F, Hoex B et al (2012) Optimised antireflection coatings using silicon nitride on textured silicon surfaces based on measurements and multidimensional modelling. In: Energy procedia, pp 78–83

    Google Scholar 

  • Goetzberger A, Knobloch J, Voss B (1998) Crystalline silicon solar cells. Wiley

    Google Scholar 

  • Griffiths DJ (1999) Introduction to electrodynamics, 3rd edn.

    Google Scholar 

  • Kumar P, Wiedmann MK, Winter CH, Avrutsky I (2009) Optical properties of Al2O3 thin films grown by atomic layer deposition. Appl Opt 48:5407. doi:10.1364/AO.48.005407

    Article  Google Scholar 

  • Mcintosh KR, Baker-finch SC (2012) OPAL 2.0: rapid optical simulation of practical silicon solar cells. In: 38th IEEE PVSC 265. doi:10.1109/PVSC.2012.6317616

  • McIntosh KR, Kho TC, Fong KC et al (2014) Quantifying the optical losses in back-contact solar cells. In: 2014 IEEE 40th Photovoltaic Specialist Conference (PVSC). IEEE, pp 0115–0123

    Google Scholar 

  • PC1D 5.9 PC1D (ver 5.9) Software for modelling a solar cell

    Google Scholar 

  • PVlighthouse OPAL2: Optical simulator. https://www2.pvlighthouse.com.au/calculators/OPAL2/OPAL2.aspx

  • Rahman MZ (2012) Modeling minority carrier’ s recombination lifetime of p-Si Solar Cell

    Google Scholar 

  • Rahman MZ, Khan SI (2012) Advances in surface passivation of c-Si solar cells. Mater Renew Sustain Energy 1:1. doi:10.1007/s40243-012-0001-y

    Article  Google Scholar 

  • Richards BS (2003) Single-material TiO2 double-layer antireflection coatings. Sol Energy Mater Sol Cells 79:369–390. doi:10.1016/S0927-0248(02)00473-7

    Article  Google Scholar 

  • Singh HK, Arunachalam B, Kumbhar S et al (2016) Opto-electrical performance improvement of mono c-Si solar cells using dielectric–metal–dielectric (D-M-D) sandwiched structure-based plasmonic anti-reflector. Plasmonics 11:323–336. doi:10.1007/s11468-015-0049-5

    Article  Google Scholar 

  • Siqueiros JM, Machorro R, Regalado LE (1988) Determination of the optical constants of MgF2 and ZnS from spectrophotometric measurements and the classical oscillator method. Appl Opt 27:2549. doi:10.1364/AO.27.002549

    Article  Google Scholar 

  • Standard IEC 60904-3 (2008) Measurement principles for terrestrial PV solar devices with reference spectral irradiance data

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chetan Singh Solanki .

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd.

About this chapter

Cite this chapter

Solanki, C.S., Singh, H.K. (2017). Principle of Dielectric-Based Anti-reflection and Light Trapping. In: Anti-reflection and Light Trapping in c-Si Solar Cells. Green Energy and Technology. Springer, Singapore. https://doi.org/10.1007/978-981-10-4771-8_3

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-4771-8_3

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-4770-1

  • Online ISBN: 978-981-10-4771-8

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics