Skip to main content

Future Scope in Advanced Lighting Trapping Structure Development

  • Chapter
  • First Online:
Book cover Anti-reflection and Light Trapping in c-Si Solar Cells

Part of the book series: Green Energy and Technology ((GREEN))

  • 840 Accesses

Abstract

This chapter focuses on the future scope and requirements for research for different light trapping technologies in context of c-Si solar cells. Discussion has been made mainly on the future advancement needed in light trapping structure development and a brief projection for certain areas which can be of immediate interest to research and development community.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Beck FJ, Mokkapati S, Catchpole KR (2010) Plasmonic light-trapping for Si solar cells using self-assembled, Ag nanoparticles. Prog Photovoltaics Res Appl 18:500–504. doi:10.1002/pip.1006

    Article  Google Scholar 

  • Chiu P-K, Lee C-T, Chiang D et al (2014) Conductive and transparent multilayer films for low-temperature TiO2/Ag/SiO2 electrodes by E-beam evaporation with IAD. Nanoscale Res Lett 9:35. doi:10.1186/1556-276X-9-35

    Article  Google Scholar 

  • Eisenlohr J, Lee BG, Benick J et al (2015) Rear side sphere gratings for improved light trapping in crystalline silicon single junction and silicon-based tandem solar cells. Sol Energy Mater Sol Cells 142:60–65. doi:10.1016/j.solmat.2015.05.043

    Article  Google Scholar 

  • Jain S, Depauw V, Miljkovic VD et al (2015) Broadband absorption enhancement in ultra-thin crystalline Si solar cells by incorporating metallic and dielectric nanostructures in the back reflector. Prog Photovoltaics Res Appl 23:1144–1156. doi:10.1002/pip.2533

    Article  Google Scholar 

  • Martini R, Kepa J, Debucquoy M et al (2014) Thin silicon foils produced by epoxy-induced spalling of silicon for high efficiency solar cells. Appl Phys Lett 105:173906. doi:10.1063/1.4901026

    Article  Google Scholar 

  • Sahu DR, Huang JL (2009) Development of ZnO-based transparent conductive coatings. Sol Energy Mater Sol Cells 93:1923–1927. doi:10.1016/j.solmat.2009.07.004

    Article  Google Scholar 

  • Sahu DR, Lin S-Y, Huang J-L (2007) Deposition of Ag-based Al-doped ZnO multilayer coatings for the transparent conductive electrodes by electron beam evaporation. Sol Energy Mater Sol Cells 91:851–855. doi:10.1016/j.solmat.2007.02.003

    Article  Google Scholar 

  • Sergeant NP, Hadipour A, Niesen B et al (2012) Design of transparent anodes for resonant cavity enhanced light harvesting in organic solar cells. Adv Mater 24:728–732. doi:10.1002/adma.201104273

    Article  Google Scholar 

  • Singh HK, Arunachalam B, Kumbhar S et al (2016) Opto-electrical performance improvement of mono c-si solar cells using Dielectric–Metal–Dielectric (D-M-D) sandwiched structure-based plasmonic anti-reflector. Plasmonics 11:323–336. doi:10.1007/s11468-015-0049-5

    Article  Google Scholar 

  • Spinelli P, Verschuuren MA, Polman A (2012) Broadband omnidirectional antireflection coating based on subwavelength surface Mie resonators. Nat Commun 3:692. doi:10.1038/ncomms1691

    Article  Google Scholar 

  • Teplin CW, Grover S, Chitu A et al (2015) Comparison of thin epitaxial film silicon photovoltaics fabricated on monocrystalline and polycrystalline seed layers on glass. Prog Photovoltaics Res Appl 23:909–917. doi:10.1002/pip.2505

    Article  Google Scholar 

  • Terheiden B, Ballmann T, Horbelt R et al (2015) Manufacturing 100-µm-thick silicon solar cells with efficiencies greater than 20% in a pilot production line. Phys Status Solidi 212:13–24. doi:10.1002/pssa.201431241

    Article  Google Scholar 

  • Zhou L, Huang C, Wu S et al (2010) Enhanced optical transmission through metal-dielectric multilayer gratings. Appl Phys Lett 97:11905. doi:10.1063/1.3458702

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chetan Singh Solanki .

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd.

About this chapter

Cite this chapter

Solanki, C.S., Singh, H.K. (2017). Future Scope in Advanced Lighting Trapping Structure Development. In: Anti-reflection and Light Trapping in c-Si Solar Cells. Green Energy and Technology. Springer, Singapore. https://doi.org/10.1007/978-981-10-4771-8_10

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-4771-8_10

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-4770-1

  • Online ISBN: 978-981-10-4771-8

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics