Skip to main content

Marine Filamentous Fungi: Diversity, Distribution and Bioprospecting

  • Chapter
  • First Online:
Developments in Fungal Biology and Applied Mycology

Abstract

Marine fungi constitute a model mycobiota to evaluate several fundamental assumptions and adaptations to extreme habitats. They are ecologically diverse and cosmopolitan in distribution in all oceans as endemics and indigenous communities. Molecular techniques are revealing high diversity and distribution than assessment based on morphological characterization. They have the capability to grow and process a wide variety of detritus and substrata in saline habitats. Besides, they also colonize live parts especially mangrove plant species, seaweeds and sea grasses as endophytes . Majority of studies on marine fungi are confined to the Europe, North America and Southeast Asia, while meagre information is available from the Indian Subcontinent in spite of its rich marine habitats. In the recent past, marine fungi became a focal point of investigation especially for bioprospecting. Marine fungi are capable of yielding a variety of new compounds worth exploring for their bioactive potential especially enzymes, antibiotics, anticancer properties and bioremediation . The current knowledge is mainly from culture-dependent marine fungi, while understanding culture-independent marine fungi needs sophisticated methods like metagenomics. Besides, metagenomics enhances our knowledge on marine fungal diversity and distribution and helps in cloning precise DNA of culture-independent fungi to harness bioactive principles.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ainsworth GC, Bisby GR, Cannon PF, David JC, Staplers JA, Kirk PM (2001) Ainsworth and Bisby’s dictionary of the fungi, 9th edn. CAB International, Wallingford, UK

    Google Scholar 

  • Allen JRL, Pye K (1992) Coastal saltmarshes: their nature and importance. In: Allen JRL, Pye K (eds) Saltmarshes: morphodynamics, conservation, and engineering significance. Cambridge University Press, Cambridge, pp 1–18

    Google Scholar 

  • Almaabidi AD, Gojobori T, Mineta K (2015) Marine metagenome as a resource for novel enzymes. Genomcs Proteom Bioinformat 13:290–295

    Google Scholar 

  • Alongi DM (2002) Present state and future of the world’s mangrove forests. Environ Conserv 29:331–349

    Google Scholar 

  • Alva P, McKenzie EHC, Pointing SB, Pena-Muralla R, Hyde KD (2002) Do seagrasses harbour endophytes? In: Hyde KD (ed) Fungi in marine environment, vol 7. Fungal diversity research series. Hong Kong University Press, Hong Kong, pp 167–178

    Google Scholar 

  • Ananda K, Sridhar KR (2001) Mycoflora on dead animal materials of mangrove habitats of Karnataka Coast, India. Sri Lanka. J Aqua Sci 6:85–93

    Google Scholar 

  • Ananda K, Sridhar KR (2002) Diversity of endophytic fungi in the roots of mangrove species on west coast of India. Can J Microbiol 48:871–878

    CAS  PubMed  Google Scholar 

  • Ananda K, Prasannarai K, Sridhar KR (1998) Occurrence of higher marine fungi on marine animal substrates of some beaches along the west coast of India. Indian J Marine Sci 27:233–236

    Google Scholar 

  • Anita DD, Sridhar KR (2009) Assemblage and diversity of fungi associated with mangrove wild legume Canavalia cathartica. Trop Subtrop Agroecosyst 10:225–235

    Google Scholar 

  • Anita DD, Sridhar KR, Bhat R (2009) Diversity of fungi associated with mangrove legume Sesbania bispinosa (Jacq.) W. Wight (Fabaceae). Livestock research for rural development. Article #67. http://www.lrrd.org/lrrd21/5/cont2105.htm

  • Arnold AE, Henk DA, Eells RL, Lutzoni F, Vilgalys R (2007) Diversity and phylogenetic affinities of foliar fungal endophytes in loblolly pine inferred by culturing and environmental PCR. Mycologia 99:185–206

    CAS  PubMed  Google Scholar 

  • Berbee ML, Taylor JW (1993) Dating the evolutionary radiations of the true fungi. Can J Bot 71:1114–1127

    Google Scholar 

  • Bucher VV, Hyde KD, Pointing SB, Reddy CA (2004) Production of wood decay enzymes, mass loss and lignin solubilization in wood and marine ascomycetes and their anamorphs. Fungal Divers 15:1–14

    Google Scholar 

  • Calado ML, Barata M (2012) Salt marsh fungi. In: Jones EBG, Pang KL (eds) Marine fungi and fungal-like organisms. Walter de Gruyter GmbH & Co. KG, Berlin/Boston, pp 345–381

    Google Scholar 

  • D’Souza DT, Tiwari R, Sah AK, Raghukumar C (2006) Enhanced production of laccase by a marine fungus during treatment of colored effluents and synthetic dyes. Enzyme Microb Technol 38:504–511

    Google Scholar 

  • Damare SR, Raghukumar C, Raghukumar S (2006) Fungi in deep-sea sediments of the Central Indian Basin. Deep Sea Res 53:14–27

    Google Scholar 

  • Damare SR, Singh P, Raghukumar C (2012) Biotechnology of marine fungi. In: Raghukumar C (ed) Biology of marine fungi, progress in molecular and subcellular biology, vol 53. Springer, Berlin Heidelberg, pp 279–297

    Google Scholar 

  • Ebel R (2006) Secondary metabolites from marine-derived fungi. In: Proksch P, Müller WEG (eds) Frontiers in marine biotechnology. Horizon Bioscience, England, pp 73–143

    Google Scholar 

  • Ebel R (2012) Natural products from marine-derived fungi. In: Jones EBG, Pang KL (eds) Marine fungi and fungal-like organisms. Walter de Gruyter GmbH & Co. KG, Berlin/Boston, pp 411–440

    Google Scholar 

  • Field C (1995) Journey amongst mangroves. International Society for Mangrove Ecosystems, Okinawa, Japan

    Google Scholar 

  • Furbino LE, Godinho VM, Santiago IF, Pellizari FM, Alves TMA, Zani CL, Junior PAS, Romanha AJ, Carvalho AGO, Gil LHVG, Rosa CA, Minnis AM, Rosa LH (2014) Diversity patterns, ecology and biological activities of fungal communities associated with the endemic macroalgae across the antarctic peninsula. Microb Ecol 67:775–787

    PubMed  Google Scholar 

  • Godinho VM, Furbino LE, Santiago IF, Pellizzari FM, Yokoya NS, Pupo D, Alves TMA, Junior PAS, Romanha AJ, Zani CL, Cantrell CL, Rosa CA, Rosa LH (2013) Diversity and bioprospecting of fungal communities associated with endemic and cold-adapted macroalgae in Antarctica. ISME J 7:1434–1451

    CAS  PubMed  PubMed Central  Google Scholar 

  • Grant WD, Atkinson M, Burke B, Molloy C (1996) Chitinolysis by the marine ascomycete Corollosporam aritima Werdermann: purification and properties of a chitobiosidase. Bot Mar 39:177–186

    CAS  Google Scholar 

  • Guerriero A, D’Ambrosio M, Cumo V, Vanzanella F, Pietra F (1989) Novel trinor-eremophilanes (dendryphiellin B, C and D), ermophilanes (dendryphiellin E, F and G), and branched C9-carboxylic acids (dendryphiellic acid A and B) from the marine deuteromycete Dendryphiella salina (Sutherland) Pugh et Nicot. Helvetica Chimica Acta 72:438–446

    CAS  Google Scholar 

  • Höhnk W (1961) A further contribution to the oceanic mycology. Rapp P-V Réun Cons Int Explor Mer 149:201–208

    Google Scholar 

  • Hong JH, Jang S, Heo YM, Min M, Lee H, Lee YM, Lee H, Kim JJ (2015) Investigation of marine-derived fungal diversity and their exploitable biological activities. Marine Drugs 13:4137–4155

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hyde KD, Pointing SB (2000) Marine mycology-a practical approach. Fungal diversity research series, vol 1. Hong Kong University Press, Hong Kong

    Google Scholar 

  • Hyde KD, Soytong K (2008) The fungal endophyte dilemma. Fungal Divers 33:163–173

    Google Scholar 

  • Jebaraj CS, Raghukumar C, Behnke A, Stoeck T (2010) Fungal diversity in oxygen-depleted regions of the Arabian Sea revealed by targeted environmental sequencing combined with cultivation. FEMS Microbial Ecol 71:399–412

    CAS  Google Scholar 

  • Jones EBG (2000) Marine fungi: some factors influencing biodiversity. Fungal Divers 4:53–73

    Google Scholar 

  • Jones EBG (2011a) Fifty years of marine mycology. Fungal Divers 50:73–112

    Google Scholar 

  • Jones EBG (2011b) Are there more marine fungi to be described? Bot Mar 54:343–354

    Google Scholar 

  • Jones EBG, Pang KL (2012) Tropical aquatic fungi. Biodivers Conserv 21:2403–2423

    Google Scholar 

  • Jones EBG, Pang KL, Stanley SJ (2012) Fungi from marine algae. In: Jones EBG, Pang KL (eds) Marine fungi and fungal-like organisms. Walter de Gruyter GmbH & Co. KG, Berlin/Boston, pp 329–344

    Google Scholar 

  • Jones EBG, Sakayaroj J, Suetrong S, Smorithipol S, Pang KL (2009) Classification of marine Ascomycota, anamorphic taxa and Basidiomycota. Fungal Divers 35:1–187

    Google Scholar 

  • Kakeya H, Takahashi I, Okada G, Isono K, Hiroyuki O (1995) Epolactaene, a novel neuritogenic compound human neuroblastoma cells produced by a marine fungus. J Antibiot 48:733–735

    CAS  PubMed  Google Scholar 

  • Kohlmeyer J, Kohlmeyer E (1979) Marine mycology: the higher fungi. Academic Press, New York

    Google Scholar 

  • Kohlmeyer J, Volkmann-Kohlmeyer B (1990) New species of Koralionastes (Ascomycotina) from the Caribbean and Australia. Can J Bot 68:1554–1559

    Google Scholar 

  • Kohlmeyer J, Volkmann-Kohlmeyer B (1992) Two ascomycotina from coral reef in the Caribbean and Australia. Cryptogam Botany 2:367–374

    Google Scholar 

  • Kohlmeyer J, Volkmann-Kohlmeyer B (1998) Mycophycias, a new genus for the mycobiont of Apophlaea, Ascophyllum and Pelvetia. Syst Ascomycetum 16:1–7

    Google Scholar 

  • Kohlmeyer J, Volkmann-Kohlmeyer B (2001) The biodiversity of fungi on Juncus roemerianus. Mycol Res 105:1411–1412

    Google Scholar 

  • Kumaresan V, Suryanarayanan TS (2001) Occurrence and distribution of endophytic fungi in a mangrove community. Mycol Res 105:1388–1391

    Google Scholar 

  • Kumaresan V, Suryanarayanan TS (2002) Endophyte assemblage in young, mature and senescent leaves of Rhizophora apiculata: evidence for the role of endophytes in mangrove litter degradation. Fungal Divers 9:81–91

    Google Scholar 

  • Lee SY (1995) Mangrove out welling: a review. Hydrobiologia 295:203–212

    Google Scholar 

  • Li Q, Wang G (2009) Diversity of fungal isolates from three Hawaiian marine sponges. Microbiol Res 164:233–241

    CAS  PubMed  Google Scholar 

  • Loilng A, Sakayaroj J, Rungjindamai N, Choeyklin R, Jones J (2012) Biodiversity of fungi on the palm Nypa fruticans. In: Jones EBG, Pang KL (eds) Marine fungi and fungal-like organisms. Walter de Gruyter GmbH & Co. KG, Berlin/Boston, pp 273–290

    Google Scholar 

  • Malmstrom J, Christophersen C, Barrero AF, Oltra JE, Justica J, Rosales A (2002) Bioactive metabolites from a marine-derived strain of the fungus Emericella variecolor. J Nat Prod 65:364–367

    CAS  PubMed  Google Scholar 

  • Maria GL, Sridhar KR (2003) Endophytic fungal assemblage of two halophytes from west coast mangrove habitats, India. Czech Mycol 55:241–251

    Google Scholar 

  • Mayer AMS, Gustafson KR (2003) Marine pharmacology in 2000: antitumor and cytotoxic compounds. Int J Cancer 105:291–299

    CAS  PubMed  Google Scholar 

  • Meenupriya, J, Thangaraj M (2012) Bioprospecting of potent fungal strains from marine sponge Hyatella cribriformis from Gulf of Mannar coast. In: International conference on bioscience, biotechnology and healthcare sciences, 14–15 Dec 2012, Singapore, pp 73–75

    Google Scholar 

  • Nagahama T, Nagano Y (2012) Cultured and uncultured fungal diversity in deep-sea environments. In: Raghukumar C (ed) Biology of marine fungi, progress in molecular and subcellular biology, vol 53. Springer, Berlin Heidelberg, pp 173–187

    Google Scholar 

  • Naik BS, Shashikala J, Krishnamurthy YL (2007) Study on the diversity of endophytic communities from rice (Oryza sativa L.) and their antagonistic activities in vitro. Microbiol Res 164:90–296

    Google Scholar 

  • Nambiar GR, Raveendran K (2015) Frequency of marine fungi on animal substrates along west coast of India. Curr Res Environ Appl Mycol 5:394–397

    Google Scholar 

  • Nedzarek A, Rakusa-Suszczewski S (2004) Decomposition of macro-algae and the release of nutrient in Admiraly Bay, King George Island, Antarctica. Polar Biosci 17:16–35

    Google Scholar 

  • Osterhage C, Kaminsky R, Konig GM, Wright AD (2000) Ascosalipyrrolidinone A, an antimicrobial alkaloid from the obligate marine fungus Ascochyta salicorniae. J Org Chem 65:6412–6417

    CAS  PubMed  Google Scholar 

  • Pang KL, Chow RKK, Chan CW, Vrijmoed LLP (2011) Diversity and phylogeny of marine lignicolous fungi in Arctic waters: a preliminary account. Polar Res 30:1–5

    Google Scholar 

  • Phongpaichit S, Preedanon S, Rukachaisirikul V, Sakayaroj J, Benzies C, Chuaypat J, Plathong S (2006) Aspergillosis of the gorgonian sea fan Annella sp., after the 2004 tsunami at Mu Ko Similan National Park, Andaman Sea, Thailand. Coral Reefs 25:296.

    Google Scholar 

  • Qasim SZ, Wafar MVM (1990) Marine resources in the tropics. Resour Manage Optim 7:141–169

    Google Scholar 

  • Raghukumar C (2005) Marine fungi and their enzymes for decolorization of colored effluents. In: Ramaiah N (ed) Marine microbiology: facets and opportunities. National Institute of Oceanography, Goa, India, pp 145–158

    Google Scholar 

  • Raghukumar C (2008) Marine fungal biotechnology: an ecological perspective. Fungal Divers 31:19–35

    Google Scholar 

  • Raghukumar C, D’Souza TM, Thorn RG, Reddy CA (1999) Lignin-modifying enzymes of Flavodon flavus, a basidiomycete isolated from a coastal marine environment. Appl Environ Microbiol 65:2103–2111

    CAS  PubMed  PubMed Central  Google Scholar 

  • Raghukumar S, Raghukumar C, Chinnaraj S, Chandramohan D, DeSouza TM, Reddy CA (1994) Laccase and other lignocellulose modifying enzymes of marine fungi isolated from the coast of India. Bot Mar 37:515–523

    CAS  Google Scholar 

  • Rämä T, Nordén J, Davey ML, Mathiassen GH, Spatafora JW, Kauserud H (2014) Fungi ahoy! Diversity on marine wooden substrata in the high North. Fungal Ecol 8:46–58

    Google Scholar 

  • Rees G, Jones EBG (1985) The fungi of coastal sand dune system. Bot Mar 28:213–220

    Google Scholar 

  • Rosello MA, Descals E, Cabrer B (1993) Nia epidermoidea, a new marine gasteromycete. Mycol Res 97:68–70

    Google Scholar 

  • Sakayaroj J, Preedanon S, Phongpaichit S, Buatong J, Chaowalit P, Rukachaisirikul V (2012) Diversity of endophytic and marine-derived fungi associated with marine plants and animals. In: Jones EBG, Pang KL (eds) Marine fungi and fungal-like organisms. Walter de Gruyter GmbH & Co. KG, Berlin/Boston, pp 291–328

    Google Scholar 

  • Sakayaroj J, Supaphon O, Jones EBG, Phongpaichit S (2011) Diversity of higher marine fungi at Hat Khanom-Mu KoThale Tai National Park, Southern Thailand. J Sci Technol 33:15–22

    Google Scholar 

  • Saleem M, Ali MS, Hussain S, Jabbar A, Ashraf M, Lee YS (2007) Marine natural products of fungal origin. Nat Prod Rep 24:1142–1152

    CAS  PubMed  Google Scholar 

  • Sarma VV (2012) Diversity and distribution of marine fungi on Rhizophora sp. in mangroves. In: Raghukumar C (ed) Biology of marine fungi, progress in molecular and subcellular biology, vol 53. Springer, Berlin Heidelberg, pp 244–275

    Google Scholar 

  • Schmit JP, Shearer CA (2003) A checklist of mangrove-associated fungi, their geographical distribution and known host plants. Mycotaxon 53:423–477

    Google Scholar 

  • Shearer CA, Descals E, Kohlmeyer B, Kohlmeyer J, Marvanová L, Padgett DE, Porter D, Raja HA, Schmit JP, Thorton HA, Voglymayr H (2007) Fungal biodiversity in aquatic habitats. Biodivers Conserv 16:49–67

    Google Scholar 

  • Shi DH, Wu JH, Ge HM, Tan RX (2009) Protective effect of hopeahainol A, a novel acetylcholinesterase inhibitor, on hydrogen peroxide-induced injury in PC12 cells. Environ Toxicol Pharmacol 28:30–36

    Google Scholar 

  • Singh P, Raghukumar C, Verma P, Shouche Y (2011) Fungal community analysis in the deep-sea sediments of the Central Indian Basin by culture-independent approach. Microb Ecol 61:507–517

    CAS  PubMed  Google Scholar 

  • Singh P, Wang X, Leng K, Wang G (2012) Diversity and ecology of marine-derived fungi. In: Jones EBG, Pang KL (eds) Marine fungi and fungal-like organisms. Walter de Gruyter GmbH & Co. KG, Berlin/Boston, pp 383–408

    Google Scholar 

  • Sridhar KR (2012) Decomposition of materials in the sea. In: Jones EBG, Pang KL (eds) Marine fungi and fungal-like organisms. Walter de Gruyter GmbH & Co. KG, Berlin/Boston, pp 475–500

    Google Scholar 

  • Sridhar KR, Maria GL (2006) Fungal diversity on woody litter of Rhizophora mucronata in a southwest Indian mangrove. Indian J Marine Sci 35:318–325

    Google Scholar 

  • Sridhar KR, Alias SA, Pang KL (2012a) Mangrove fungi. In: Jones EBG, Pang KL (eds) Marine fungi and fungal-like organisms. Walter de Gruyter GmbH & Co. KG, Berlin/Boston, pp 253–271

    Google Scholar 

  • Sridhar KR, Karamchand KS, Pascoal C, Cássio F (2012b) Assemblage and diversity of fungi on wood and seaweed litter of seven northwest Portuguese beaches. In: Raghukumar C (ed) Biology of marine fungi, progress in molecular and subcellular biology, vol 53. Springer, Berlin Heidelberg, pp 209–228

    Google Scholar 

  • Stanley SJ (1991) The Autecology and ultrastructural interactions between Mycosphaerella ascophylli cotton, Lautitadanica (Berlese) Schatz, Mycaureola dilseae Maireet Chemin, and their respective marine algal hosts. Ph.D. thesis, University of Portsmouth, UK

    Google Scholar 

  • Strobel GA, Woapong FJ, Harper JK, Arif AM, Grant DM, Fung PCW, Chan K (2002) Isopestacin, an isobenzopuranone from Pestalotiopsis microspora, possessing antifungal and antioxidant activities. Phytochemistry 60:179–183

    CAS  PubMed  Google Scholar 

  • Suryanarayanan TS, Thirunvukkarasu N, Govindarajulu MB, Sasse F, Jansen R, Murali TS (2009) Fungal endophytes and bioprospecting. Fungal Ecol 23:9–19

    Google Scholar 

  • Suryanarayanan TS (2012a) Fungal endosymbionts of seaweeds. In: Raghukumar C (ed) Biology of marine fungi, progress in molecular and subcellular biology, vol 53. Springer, Berlin Heidelberg, pp 53–69

    Google Scholar 

  • Suryanarayanan TS (2012b) The diversity and importance of fungi associated with marine sponges. Bot Mar 55:553–564

    Google Scholar 

  • Suryanarayanan TS, Kumaresan V (2000) Endophytic fungi of some halophytes from an estuarine mangrove forest. Mycol Res 104:1465–1467

    Google Scholar 

  • Suryanarayanan TS, Kumaresan V, Johnson JA (1998) Foliar fungal endophytes from two species of the mangrove Rhizophora. Can J Microbiol 44:1003–1006

    CAS  Google Scholar 

  • Suryanarayanan TS, Venkatahalam A, Thirunavukkarasu N, Ravishankar JP, Doble M, Geetha V (2010) Internal mycobiota of marine microalgae from the Tamil Nadu Coast: distribution, diversity and biotechnological potential. Bot Mar 53:456–468

    Google Scholar 

  • Svendrup HU, Johnson MW, Fleming RH (1942) The oceans. Prentice Hall, Englewood Cliffs, New Jersey

    Google Scholar 

  • Taylor TN, Hass H, Remy W (1992) Devonian fungi: interactions with the green alga Palaeonitella. Mycologia 84:901–910

    Google Scholar 

  • Taylor TN, Remy W, Hass H, Kerp H (1995) Fossil arbuscular mycorrhizae from the early Devonian. Mycologia 87:560–573

    Google Scholar 

  • Thirunavukkarasu N, Suryanarayanan TS, Girivasan KP, Venkatachalam A, Geetha V, Ravishankar JP, Doble M (2012) Fungal symbionts of marine sponges from Rameswaram, southern India: species composition and bioactive metabolites. Fungal Divers 55:37–46

    Google Scholar 

  • Tomlinson PB (1986) The botany of mangroves. Cambridge University Press, Cambridge

    Google Scholar 

  • Vega FE, Posada F, Aime MC, Pava-Ripoll M, Infante F, Rehner SA (2008) Entomopathogenic fungal endophytes. Biol Control 46:72–82

    Google Scholar 

  • Velmurugan N, Lee YS (2012) Enzymes from marine fungi: current research and future prospects. In: Jones EBG, Pang KL (eds) Marine fungi and fungal-like organisms. Walter de Gruyter GmbH & Co. KG, Berlin/Boston, pp 441–474

    Google Scholar 

  • Venkatachalam A, Govinda RMB, Thirunavukkarasu N, Suryanarayanan TS (2015) Endophytic fungi of marine algae and sea grasses: a novel source of chitin modifying enzymes. Mycosphere 6:345–355

    Google Scholar 

  • Venkatachalam A, Thirunavukkarasu N, Suryanarayanan TS (2016) Distribution and diversity of endophytes in sea grasses. Fungal Ecol 13:60–65

    Google Scholar 

  • Zhang T, Wang NF, Zhang YQ, Liu HY, Yu LY (2015) Diversity and distribution of fungal communities in the marine sediments of Kongsfjorden, Svalbard (high Arctic). Scientific Rep 5:1–11. https://doi.org/10.1038/srep14524

    Article  CAS  Google Scholar 

  • Zhang Y, Mu J, Feng Y, Kang Y, Zhang J, Gu PJ, Wang Y, Ma LF, Zhu YH (2009) Broad-spectrum antimicrobial epiphytic and endophytic fungi from marine organisms: isolation, bioassay and taxonomy. Marine Drugs 7:97–112

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zuccaro A, Schulz B, Mitchell JI (2003) Molecular detection of ascomycetes associated with Fusus serratus. Mycol Res 107:1451–1466

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The author is grateful to the Mangalore University for providing facilities to carry out research on marine fungi and the University Grants Commission, New Delhi, for the award of UGC-BSR Faculty Fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. R. Sridhar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sridhar, K.R. (2017). Marine Filamentous Fungi: Diversity, Distribution and Bioprospecting. In: Satyanarayana, T., Deshmukh, S., Johri, B. (eds) Developments in Fungal Biology and Applied Mycology. Springer, Singapore. https://doi.org/10.1007/978-981-10-4768-8_5

Download citation

Publish with us

Policies and ethics