Skip to main content

Fungal Pigments: An Overview

  • Chapter
  • First Online:
Developments in Fungal Biology and Applied Mycology

Abstract

Since ages, colors have been an integral part of humankind whether it belongs to foodstuff, clothing, or day-to-day living. Long back in history, various pigments are used by all the races. Earlier the colors that were in use were natural in origin, but due to rise in demand mankind shifted to manufacturing of synthetic colors. With the passage of time, it has been now proved that these synthetic colors have many side effects like being immunosuppressive, carcinogenic. Due to deleterious health effects, the need for some alternative has emerged that can be used as a color. Plants, insects, and other microorganisms have started taken place of synthetic colors. As there are many factors that limit the usage of plants and insects, research turned toward the microorganism. There are many fungi whose pigments are now considered as safe and economical. Fungi like Aspergillus, Fusarium, Penicillum, Monascus, Trichoderma, and Laetiporus are reported to produce quinones, anthraquinones, Rubropuntamine, Rubropuntatin, Ankaflavin, Monascin, β-carotene, and many other pigments responsible for various colors, viz. red, purple, yellow, brown, orange, and green. In addition to providing natural colors, these pigments possess many therapeutic applications like immune modulators, anticancer, antioxidant, antiproliferative. These pigments are produced as secondary metabolites by utilizing one of the pathways: polyketide, mevalonate, and shikimate pathways. The pigments are fermentative products so are affected by temperature, pH, carbon source, aeration, and type of fermentation (solid or submerged). There are many agencies that approve the usage of pigments for humankind. Fungi can work as cell factories for color production that is economical and human friendly.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aberoumand A (2011) A review article on edible pigments properties and sources as natural biocolorants in foodstuff and food industry. World J Dairy Food Sci 6(1):71–78

    Google Scholar 

  • Ajdari Z, Ebrahimpour A, Manan MA, Hamid M, Mohamad R, Ariff AB (2011) Nutritional requirements for the improvement of growth and sporulation of several strains of Monascus purpureus on solid state cultivation. J Biomed Biotechnol. 201l:1–9. Article ID 487329, 9 pages. http://dx.doi.org/10.1155/2011/487329

  • Anslow WK, Raistrick H (1938) Studies in the biochemistry of micro-organisms: Fumigatin (3-hydroxy-4-methoxy-2:5-toluquinone), and spinulosin (3:6-dihydroxy-4-methoxy-2:5-toluquinone), metabolic products respectively of Aspergillus fumigatus Fresenius and Penicillium spinulosum Thom. Biochem J 32(4):687–696

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ashley JN, Hobbs BC, Raistrick H (1937) Studies in the biochemistry of micro-organisms: the crystalline colouring matters of Fusarium culmorum (W. G. Smith) Sacc. and related forms. Biochem J 31(3):385–397

    CAS  PubMed  PubMed Central  Google Scholar 

  • Atalla MM, Elkhrisy EAM, Asem MA (2011) Production of textile reddish brown dyes by fungi. Malays J Microbiol, 33–40

    Google Scholar 

  • Babitha S (2009) Microbial pigments. Biotechnol Agro-Ind Residues Utilisation, 153–168

    Google Scholar 

  • Babitha S, Soccol CR, Pandey A (2007) Solid-state fermentation for the production of Monascus pigments from jack fruit seed. Biores Technol, 1554–1560

    Google Scholar 

  • Babula P, Adam V, Havel L, Kizek R (2009) Noteworthy secondary metabolites naphthoquinones—occurrence, pharmacological properties and analysis. Curr Pharma Anal 5:47–68

    CAS  Google Scholar 

  • Baneshi F, Azizi M, Saberi M, Farsi M (2014) Gibberellic acid, amino acids. (glycine and L-leucine), vitamin B2 and zinc as factors affecting the production pigments by Monascus purpureus in a liquid culture using response surface methodology. Afric J Biotechnol 13:1484–1490

    Google Scholar 

  • Boonyapranai K, Tungpradit R, Hieochaiphant S (2008) Optimization of submerged culture for the production of naphthoquinones pigment by Fusarium verticillioides. Chiag Mai J Sci 35:457–466

    CAS  Google Scholar 

  • Charles JHV, Raistrick H, Robinson R, Todd AR (1933) Helminthosporin and hydroxyhelminthosporin, metabolic products of the plant pathogen, Helminthosporium gramineum. Biochem J 27:499

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chen FC, Manchard PS, Whalley WB (1969) The structure of monascin. J Chem Soc D, 130–131

    Google Scholar 

  • Cho YJ, Park JP, Hwang HJ, Kim SW, Choi JW, Yun JW (2002) Production of red pigment by submerged culture of Paecilomyces sinclairii. Lett Appl Microbiol 35:195–202

    CAS  PubMed  Google Scholar 

  • Ciapara IH, Valenzuela LF, Goycoolea FM (2006) Astaxanthin: a review of its chemistry and applications. Crit Rev Food Sci Nutr 46(2):85–196

    Google Scholar 

  • Commission regulation (EC) No 721/2006 of 23 October 2006. Authorising the placing on the market of lycopene from Blakesleatrispora as a novel food ingredient under regulation (EC) No 258/97 of the European Parliament and of the council (notified under document number C(2006) 4973) Official Journal of the European Union, L 296

    Google Scholar 

  • Davoli P, Mucci A, Schenetti L, Weber RWS (2005) Laetiporic acids, a family of non-carotenoid polyene pigments from fruit-bodies and liquid cultures of Laetiporus sulphureus (Polyporales, Fungi). Phytochemistry 66:817–823

    CAS  PubMed  Google Scholar 

  • Dikshit R, Tallapragada P (2011) Monascus purpureus: a potential source for natural pigment production. J Microbiol Biotechnol Res 1:164–174

    CAS  Google Scholar 

  • Dufosse L (2006) Microbial production of food grade pigments. Food Technol Biotechnol 44:313–321

    CAS  Google Scholar 

  • Dufosse L (2009) Pigment, microbial. Appl Microbiol Ind, 457–471

    Google Scholar 

  • Dufosse L, Fouillaud M, Caro Y, Mapari SAS, Sutthiwong N (2014) Filamentous fungi are large-scale producers of pigments and colorants for the food industry. 2014. Curr Opin Biotech 26:56–61

    CAS  PubMed  Google Scholar 

  • Durán N, Teixeira MFS, De Conti R, Esposito E (2002) Ecological-friendly pigments from fungi. Crit Rev Food Sci Nutr 42:53–66

    PubMed  Google Scholar 

  • Feng Y, Shao Y, Chen F (2012) Monascus pigments. Appl Microbiol Biotechnol 96:1421–1440

    CAS  PubMed  Google Scholar 

  • Feng P, Shang Y, Cen K, Wang C (2015) Fungal biosynthesis of the bibenzoquinone oosporein to evade insect immunity. Proc Natl Acad Sci 112(36):11365–11370

    CAS  PubMed  Google Scholar 

  • Fujii I, Watanabe A, Sankawa U, Ebizuka Y (2001) Identification of Claisen cyclase domain in fungal polyketide synthase WA, a naphthopyrone synthase of Aspergillus nidulans. Chem Biol 8:189–197

    CAS  PubMed  Google Scholar 

  • Gessler NN, Egorova AS, Belozerskaya TA (2013) Fungal anthraquinones. Appl Biochem Microbiol 49:85–99

    CAS  Google Scholar 

  • Gokhale SB, Tatiya AU, Bakliwal SR, Fursule RA (2004) Natural dye yielding plants in India. Nat Pro Radiance 3(4):228–234

    Google Scholar 

  • Gould BS, Raistrick H (1934) Crystalline colouring matters of species of the Aspergillus glaucus series. Biochem J, 1628–1640

    Google Scholar 

  • Gupta C, Sharma D, Aggarwal S, Nagpal N (2013) Pigment production from Trichoderma spp. for dyeing of silk and wool. Int J Sci Nature 4(2):351–355

    Google Scholar 

  • Gupta S, Aggarwal S (2014) Novel Bio-colorants for textile application from fungi. J Textile Ass, 282–287

    Google Scholar 

  • Hajjaj H, Blanc PJ, Goma G, Francois J (1998) Sampling techniques and comparative extaction procedures for quantitative determination of intra—and extracellular metabolites in filamentous fungi. FEMS Microbiol Lett 164:195–200

    CAS  Google Scholar 

  • Han O, Mudgett RE (1992) Effects of oxygen and carbon dioxide partial pressure on Monascus growth and pigment production in solid-state fermentations. Biotechnol Prog 8:5–10

    CAS  Google Scholar 

  • Hanson JR (2008) The chemistry of fungi. The Royal Society of Chemistry, Cambridge, UK

    Google Scholar 

  • Haxo F (1950) Carotenoids of the Mushroom Cantharellus cinnabarinus. Bot Gaz 112:228–232

    CAS  Google Scholar 

  • Howard BH, Raistrick H (1949) Studies in the biochemistry of micro-organisms. 80. The colouring matters of Penicillium islandicum Sopp. Part 1. 1:4:5-trihydroxy-2-methylanthraquinone. Biochem J 44(2):227–233

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jens F, Mapari SAS, Meyer AS, Ulf T (2012) Production of Monascuslike pigment. Technical University Denmark

    Google Scholar 

  • Juzlova P, Martinkova KV (1996) Secondary metabolites of the fungus Monascus: a review. J Ind Microbiol 16:163–170

    CAS  Google Scholar 

  • Kamala T, Indiradevi S, Chandradev Sharma K, Kennedy K (2015) Phylogeny and taxonomical investigation of Trichoderma spp. From Indian region of Indo-Burma biodiversity hot spot region with special reference to Manipur. Bio Med Res Int, 1–21. https://doi.org/10.1155/2015/285261

  • King TJ, Roberts JC, Thompson DJ (1970) The structure of purpurogenone, a metabolite of Penicillium purpurogenum stoll: an X-Ray study. J Chem Soc D

    Google Scholar 

  • Keller NP, Turner G, Bennett JW (2005) Fungal secondary Metabolism: from Biochemistry to genomics. Nat Rev 3:937–947

    CAS  Google Scholar 

  • Kirti K, Amita S, Priti S, Kumar AM, Jyoti S (2014) Colorful world of microbes: Carotenoids and their applications. Adv Biol, 1–13

    Google Scholar 

  • Klostermeyer D (2000) Novel Benzotropolone and 2H-Furo[3,2-b] benzopyran-2-one Pigments from Tricholoma aurantium (Agaricales). Eur J Org Chem 2000(4):603–609

    Google Scholar 

  • Kumar A, Verma U, Sharma U (2012) Antibacterial activity Monascus purpureus (red pigment) isolated from rice malt. Asian J Biol life Sci 1:252–255

    Google Scholar 

  • Kunwar A, Adhikary B, Jayakumar S, Barik A, Chattopadhyay S, Raghukumar S, Priyadarsini KI (2012) Melanin, a promising radioprotector: mechanisms of actions in a mice model. Toxicol App Phrmaco 264(2):202–211

    CAS  Google Scholar 

  • Lin CF (1973) Isolation and culture condition of Monascus sp. for the production of pigment in submerged culture. J Ferment Technol 51:407–414

    CAS  Google Scholar 

  • Liu Q, Xie N, He Y, Wang L, Shao Y, Chen F (2014) MpigE, a gene involved in pigment biosynthesis in Monascus ruber M7. Appl Microbiol Biotechnol 98:285–296

    CAS  PubMed  Google Scholar 

  • Lucas EMF, Machado Y, Ferreira AA, Dolabella LMP, Takahashi JA (2010) Improved production of pharmacologically-active sclerotiorin by Penicillium sclerotiorum. Trop J Pharma Res 9:365–371

    CAS  Google Scholar 

  • Malik K, Tokkas J, Goyal S (2012) Microbial pigments: a review. Int J Micro Res Tech 1(4):361–365

    Google Scholar 

  • Mapari SAS, Nielsen KF, Larsen TO, Frisvad JC, Meyer AS, Thrane U (2005) Exploring fungal biodiversity for the production of water soluble pigments as potential natural food colorants. Curr Openings Biotechnol 16:231–238

    CAS  Google Scholar 

  • Mapari SAS, Hansen ME, Meyer AS, Thrane U (2008) Computerized screening for novel producers of Monascus-like food pigments in Penicillium species. J Agric Food Chem 56(21):9981–9989

    CAS  PubMed  Google Scholar 

  • Mapari SAS, Meyer AS, Thrane U, Frisvad JC (2009) Identification of potentially safe promising fungal cell factories for the production of polyketide natural food colorants using chemotaxonomic rationale. Microb Cell Fact 8:24

    PubMed  PubMed Central  Google Scholar 

  • Mapari SAS, Thrane U, Meyer AS (2010) Fungal polyketide azaphilone pigments as future natural food colorants. Trends Biotechnol 28:300–307

    CAS  PubMed  Google Scholar 

  • Martinkova L, Juzlova P, Vesely D (1995) Biological activity of polyketide pigments produced by the fungus Monascus. J Appl Bacteriol 79:609–616

    CAS  Google Scholar 

  • Mendez A, Perez C, Montaez JC, Martinez G, Aguilar CN (2011) Red pigment production by Penicillium purpurogenum GH2 is influenced by pH and temperature. J Zhejiang Univ-Sci B (Biomed & Biotechnol) 12:961–968

    Google Scholar 

  • Miao F-P, Li X-D, Liu X-H, Cichewicz RH, Ji N-Y (2012) Secondary metabolites from an algicolous Aspergillus versicolor strain. Mar Drugs 10:131–139

    CAS  PubMed  PubMed Central  Google Scholar 

  • Moharram AM, Eman MM, Ismail MA (2012) Chemical profile of Monascus ruber strains. Food Technol Biotechnol 50:490–499

    CAS  Google Scholar 

  • Moss M (2002) Bacterial pigments. Microbiologist, 10–12

    Google Scholar 

  • Mostafa ME, Abbady MS (2014) Secondary metabolites and bioactivity of the Monascus pigments review article. Glob J Biotechnol Biochem 9:1–13

    CAS  Google Scholar 

  • Mukherjee G, Singh SK (2011) Purification and characterization of a red pigment from Monascus purpureus in submerged fermentation. Process Biochem 46:188–192

    CAS  Google Scholar 

  • Mukherjee PK, Kenerley CM (2010) Regulation of morphogenesis and biocontrol properties in Trichoderma virens by a velvet protein, vel1. Appl Environ Microbiol 76:2345–2352

    CAS  PubMed  PubMed Central  Google Scholar 

  • Musaalbakri AM, Ariff A, Rosfarizan M, Ismail AKM (2006) Improvement of red pigment producing fungal strain (Monascus purpureus FTC 5391) using monospore isolation technique. J Trop Agric Fd Sci 34:77–87

    Google Scholar 

  • Nagia FA, EL-Mohamedy RSR (2007) Dyeing of wool with natural anthraquinone from Fusarium oxysporum. Dyes Pigm 75(3):550–555

    CAS  Google Scholar 

  • Poorniammal R, Parthiban M, Gunasekaran S, Murugesan R, Thilagavathy R (2013) Natural dye production from Thermomyces sp. fungi fortextile application. Indian J Fiber Text Res 38:276–279

    CAS  Google Scholar 

  • Pradeep FS, Shakilabegam M, Palaniswamy M, Pradeep BV (2013) Influence of culture media on growth and pigment production by Fusarium moniliforme KUMBF1201 isolated from paddy field soil. World Appl Sci J, 2270–2277

    Google Scholar 

  • Quilico A, Panizzi L, Mugnaini E (1949) Structure of flavoglaucin and auroglaucin. Nature 164(4157):26

    CAS  PubMed  Google Scholar 

  • Raistrick H (1940) Biochemistry of the lower fungi. Annu Rev Biochem 9:571–592

    CAS  Google Scholar 

  • Raistrick H, Robinson R, Todd AR (1934) 79: Studies in the biochemistry of micro-organisms. 37: (a) On the production of hydroxy-anthraquinones by species of Helminthosporium. (b) Isolation of tritisporin, a new metabolitc product of Helminfhosporium trifid-vulgaris Nisikado. (c) The molecular constitution of catenarin. Biochem J 28:559–572

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ranjitha K, Kaushik BD (2005) Purification of phycobiliproteins from Nostoc muscorum. J Sci Ind Res 64:372–375

    CAS  Google Scholar 

  • Rynkiewicz MJ, Cane DE, Christianson DW (2001) Structure of trichodiene synthase from Fusarium sporotrichioides provides mechanistic inferences on the terpene cyclization cascade. Proc Natl Acad Sci USA 98:13543–13548

    CAS  PubMed  Google Scholar 

  • Saikawa Y, Watanabe T, Hashimoto K, Nakata M (2000) Absolute configuration and tautomeric structure of xylindein, a blue-green pigment of Chlorociboria. Phytochemistry 55(3):237–240

    CAS  PubMed  Google Scholar 

  • Santos-ebinuma VC, Roberto IC, Teixeira MFS, Passoajr A (2013) Improving of red colorants production by a new Penicillium purpurogenum strain in submerged culture and the effect of different parameters in their stability. Biotechnol Prog 29:778–785

    CAS  PubMed  Google Scholar 

  • Sharma D, Gupta C, Aggarwal S, Nagpal N (2012) Pigment extraction from fungus for textile dyeing. Indian J Fibre Text Res 37:68–73

    CAS  Google Scholar 

  • Singh N, Goel G, Singh N, Pathak BK, Kaushik D (2015) Modeling the red pigment production by Monascus purpureus MTCC 369 by Artificial Neural Network using rice water based medium. Food Biosci 11:17–22

    Google Scholar 

  • Takahashi JA, Carvalho SA (2010) Nutritional potential of biomass metabolitesfrom filamentous fungi. Curr Res Edu Topics Appl Microbiol Microbial Biotechnol, 1126–1135

    Google Scholar 

  • Tanaka H, Tamura T (1962) The chemical constitution of Rubrofusarin, a pigment from Fusarium graminearum. Agr Bioi Chern 26:767–770

    CAS  Google Scholar 

  • Teixeria MFS, Martins MS, Silva JCD, Kirsch LS, Fernandes OC, Carneirol ALB, Conti RD, Duran N (2012) Amazonian biodiversity: pigments from Aspergillus and Penicillium—characterizations, antibacterial activities and their toxicities. Curr Trends Biotechnol Pharm 6:300–311

    Google Scholar 

  • Tiwari KL, Jadhav SK, Kumar A (2011) Morphological and molecular study of different penicillium species. Middle-East J Sci Res 7(2):203–210

    Google Scholar 

  • Tudzynski B, Hedden P, Carrera E, Gaskin P (2001) The 450–4 gene of Gibberella fujikuroi encodes entkaurine oxidase in the gibberellin biosynthesis pathway. Appl Environ Microbiol 67:3514–3522

    CAS  PubMed  PubMed Central  Google Scholar 

  • Velmurugan P, Kamala Kannan S, Balachandar V, Lakshmanaperumalsamy P, Chae JC, Oh BT (2010) Natural pigment extraction from five filamentous fungi for industrial application and dyeing of leather. Carbohydr Polym 79:262–268

    CAS  Google Scholar 

  • Vendruscolo F, Pitol LO, Carciofi BAM, Moritz DE, Laurindo JB, Schmidell W, Ninow JL (2010) Construction and application a vane system in a rotational rheometer for determination of the rheological properties of Monascus ruber CCT 3802. J Biorheol 24(2):9–35

    Google Scholar 

  • Vendruscolo F, Tosin I, Giachini AJ, Schmidelli W, Ninowi J (2013) Antimicrobial activity of Monascus pigments produced in submerged fermentation. J Food Process Preserv 38:1860–1865

    Google Scholar 

  • Wickerham LJ, Flickinger MH, Johnsten RM (1946) The production of riboflavin by Ashbya gossypii. Arch Biochem 9:95–98

    CAS  PubMed  Google Scholar 

  • Yang T, Liu J, Luo F, Lin Q, Rosol TJ (2014) Anticancer properties of Monascus metabolites. Anticancer Drugs 25:735–744

    CAS  PubMed  Google Scholar 

  • Zhang X, Wang J, Chan M, Wang C (2013) Effect of nitrogen sources on production and photostability of Monascus pigments in liquid fermentation. IERI Procedia 5:344–350

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gunjan Mukherjee .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Mukherjee, G., Mishra, T., Deshmukh, S.K. (2017). Fungal Pigments: An Overview. In: Satyanarayana, T., Deshmukh, S., Johri, B. (eds) Developments in Fungal Biology and Applied Mycology. Springer, Singapore. https://doi.org/10.1007/978-981-10-4768-8_26

Download citation

Publish with us

Policies and ethics