Skip to main content

Mycoremediation: An Alternative Treatment Strategy for Heavy Metal-Laden Wastewater

  • Chapter
  • First Online:
Developments in Fungal Biology and Applied Mycology

Abstract

Industrial wastewater containing heavy metals constitutes a major source of contamination in the environment. Remediation of toxic metals from wastewater has been a challenge since long. Several physicochemical techniques are used to detoxify metal polluted sites. However, these traditional techniques are cost prohibitive due to use of chemical compounds , expensive and release of secondary toxic solid waste . Biosorption is a metabolism-independent and cost-effective method for removal of toxic metals from discharged liquid waste. Application of fungal biomass as biosorbent for toxic metal remediation has gained interest because of high surface to volume ratio, enough availability, rapid biosorption/desorption efficiency , and cost competitiveness. This chapter presents an overview of heavy metal biosorption studies performed on few potential fungal sorbents.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abbas SH, Ismail IM, Mostafa TM, Sulaymon AH (2014) Biosorption of heavy metals: a review. J Chem Sci Technol 3(4):74–102

    Google Scholar 

  • Aftab K, Akhtar K, Jabbar A, BukhariI H, Noreen R (2013) Physico-chemical study for zinc removal and recovery onto native/chemically modified Aspergillus flavus NA9 from industrial effluent. Water Res 47(13):4238–4246

    CAS  PubMed  Google Scholar 

  • Aftab K, Akhtar K, Jabbar A (2014) Batch and column study for Pb2+ remediation from industrial effluents using glutaraldehyde alginate–fungi biocomposites. Ecol Eng 73:319–325

    Google Scholar 

  • Ahluwalia SS, Goyal D (2007) Microbial and plant derived biomass for removal of heavy metals from wastewater. Biores Technol 98:2243–2257

    CAS  Google Scholar 

  • Ahluwalia SS, Goyal D (2010) Removal of Cr6+ from aqueous solution by fungal biomass. Eng Life Sci 10(5):480–485

    CAS  Google Scholar 

  • Akar T, Tunali S, Cabuk A (2007) Study on the characterization of Pb2+ biosorption by fungus Aspergillus parasiticus. Appl Biochem Biotechnol 136(3):389–405

    CAS  PubMed  Google Scholar 

  • Aksu Z, Balibek E (2007) Cr6+ biosorption by dried Rhizopus arrhizus: effect of salt (NaCl) concentration on equilibrium and kinetic parameters. J Hazard Mater 145(1–2):210–220

    CAS  PubMed  Google Scholar 

  • Akthar MN, Mohan PM (1995) Biosorption of silver ions by processed Aspergillus niger biomass. Biotech Lett 17:551–556

    CAS  Google Scholar 

  • Ali SAA (2013) Removal of heavy metals from synthesis industrial waste water using local isolated (Candida utilis and Aspergillus niger). Int J Biotechnol 2(5):83–90

    Google Scholar 

  • Anaemene IA (2012) The use of Candida sp. in the biosorption of heavy metals from industrial effluent, European. J Exp Biol 2(3):484–488

    CAS  Google Scholar 

  • Antuner APM, Watlins GM, Duncan JR (2001) Batch studies on the removal of Au3+ from aqueous solution by Azolla filiculoides. Biotech Lett 23:249–251

    Google Scholar 

  • Arévalo-Rangel DL, Cárdenas-González JF, Martínez-Juárez VM, Acosta-Rodríguez I (2013) Hexavalent chromate reductase activity in cell free extracts of Penicillium sp. Bioinorg Chem Appl 2013:1–6

    Google Scholar 

  • Avery SV, Tobin JM (1992) Mechanisms of strontium uptake by laboratory and brewing strains of Saccharomyces cerevisiae. Appl Environ Microbiol 58(12):3883–3889

    CAS  PubMed  PubMed Central  Google Scholar 

  • Avery SV, Tobin JM (1993) Mechanism of adsorption of hard and soft metal ions to Saccharomyces cerevisiae and influence of hard and soft anions. Appl Environ Microbiol 59:2851–2856

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bahafid W, Joutey NT, Sayel H, Ghachtouli NEL (2013) Mechanism of hexavalent chromium detoxification using Cyberlindnera fabianii yeast isolated from contaminated site in Fez (Morocco). J Mater Environ Sci 4(6):840–847

    CAS  Google Scholar 

  • Bajgai RC, Georgieva N, Lazarova N (2012) Bioremediation of chromium ions with filamentous yeast Trichosporon cutaneum R57. J Biol Earth Sci 2(2):70–75

    Google Scholar 

  • Barakat MA (2011) New trends in removing heavy metals from industrial wastewater. Arab J Chem 4(4):361–377

    CAS  Google Scholar 

  • Barros LMJ, Macedo GR, Duarte MML, Silva EP, Lobato AKCL (2003) Biosorption of cadmium using the fungus Aspergillus niger. J Chem Eng 20(3):229–239

    CAS  Google Scholar 

  • Bayramoglu G, Arıca MY (2008) Removal of heavy Hg2+, Cd2+ and Zn2+ metal ions by live and heat inactivated Lentinus edodes pellets. Chem Eng J 143(1):133–140

    CAS  Google Scholar 

  • Benazir JF, Suganthi R, Rajvel D, Pooja MP, Mathithumilan B (2010) Bioremediation of chromium in tannery effluent by microbial consortia. Afr J Biotech 9(21):3140–3143

    Google Scholar 

  • Bishnoi RN, Garima (2005) Fungus-an alternative for bioremediation of heavy metal containing waste water: a review. J Sci Ind Res 64:93–100

    Google Scholar 

  • Cabuk A, Ilhan S, Filik C, Çaliskan F (2005) Pb2+ biosorption by pretreated fungal biomass. Turk J Biol 29:23–28

    CAS  Google Scholar 

  • Cárdenas-Gonz´alez JF, Acosta-Rodríguez I (2010) Hexavalent chromium removal by a Paecilomyces sp. fungal strain isolated from environment. Bioinorg Chem Appl 2010:1–6

    Google Scholar 

  • Carmona ER, Creus A, Marcos R (2011) Genotoxic effects of two nickel-compounds in somatic cells of Drosophila melanogaster. Mutat Res 718:33–37

    CAS  PubMed  Google Scholar 

  • Çeribasi IH, Yetis U (2004) Biosorption of Ni2+ and Pb2+ by Phanerochaete chrysosporium from a binary metal system-kinetics. Water Soil Air Res 27(1):15–20

    Google Scholar 

  • Chapman PM, Allen HE, Z’Graggen MN (1996) Evaluation of bioaccumulation factors in regulating metals. Environ Sci Technol 30(10):448A–452A

    CAS  Google Scholar 

  • Chen BY, Chen CY, Guo WQ, Chang HW, Chen WM, Lee DJ, Huang CC, Ren NQ, Chang JS (2014) Fixed-bed biosorption of cadmium using immobilized Scenedesmus obliquus CNW-N cells on loofa (Luffa cylindrica) sponge. Biores Technol 160:175–181

    CAS  Google Scholar 

  • Chhikara S, Hooda A, Rana L, Dhankhar R (2010) Cr(VI) biosorption by immobilized Aspergillus niger in continuous flow system with special reference to FTIR analysis. J Environ Biol 31(5):561–566

    CAS  PubMed  Google Scholar 

  • Chisti Y (2004) Environmental impact of toxic pollutants. Biotechnol Adv 6:431–432

    Google Scholar 

  • Chojnacka K (2010) Biosorption and bioaccumulation—the prospects for practical applications. Environ Int 36(3):299–307

    CAS  PubMed  Google Scholar 

  • Collins YE, Stotzky G (1992) Heavy metals alter the electrokinetic properties of bacteria, yeasts and clay minerals. Appl Environ Microbiol 58:1592–1600

    CAS  PubMed  PubMed Central  Google Scholar 

  • Congeevaram S, Dhanarani S, Park J, Dexilin M, Thamaraiselvi K (2007) Biosorption of chromium and nickel by heavy metal resistant fungal and bacterial isolates. J Hazard Mater 146:270–277

    CAS  PubMed  Google Scholar 

  • Das N, Vimala R, Kartika P (2008) Biosorption of heavy metals-an overview. Indian J Biotechnol 7:159–169

    CAS  Google Scholar 

  • Dias MA, Lacerda ICA, Pimentel PF, De Castro HF, Rosa CA (2002) Removal of heavy metals by an Aspergillus terreus strain immobilized in a polyurethane matrix. Lett Appl Microbiol 34(1):46–50

    CAS  PubMed  Google Scholar 

  • Dursun A (2006) A comparative study on determination of the equilibrium, kinetic and thermodynamic parameters of biosorption of Cu2+ and Pb2+ ions onto pretreated Aspergillus niger. Biochem Eng J 28(2):187–195

    CAS  Google Scholar 

  • Dwivedi S, Mishra A, Saini D (2012) Removal of heavy metals in liquid media through fungi isolated from wastewater. Int J Sci Res 1(3):181–185

    Google Scholar 

  • El-Kassas HY, El-Taher EM (2009) Optimization of batch process parameters by response surface methodology for mycoremediation of Cr6+ by a chromium resistant strain of marine Trichoderma viride. Am Eurasian J Agric Environ Sci 5(5):676–681

    CAS  Google Scholar 

  • Eneida SC, Celia RGT, Teresa MKR (2002) Biosorption of Cr3+ by Sargassum sp. biomass. Electron J Biotechnol 5(2):15

    Google Scholar 

  • Fourest E, Roux JC (1992) Heavy-metal biosorption by fungal mycelial byproducts—mechanisms and influence of pH. Appl Microbiol Biotechnol 37:399–403

    CAS  Google Scholar 

  • Gadd GM (1992) Metal and microorganisms: a problem of definition. FEMS Microbiol Lett 100:197–204

    CAS  PubMed  Google Scholar 

  • Gadd GM, White C, De Rome L (1988) Heavy metal and radionuclide by fungi and yeasts. In: Norris PR, Kelly DP, Rowe A (eds) Biohydrometallurgy. Chippenham, Wilts

    Google Scholar 

  • Garcia MA, Alonso J, Melgar MJ (2005) Agaricus macrosporus as a potential bioremediation agent for substrates contaminated with heavy metals. J Chem Technol Biotechnol 80:325–330

    CAS  Google Scholar 

  • Garg SK, Tripathi M, Srinaath T (2012) Strategies for chromium bioremediation of tannery effluent. Rev Environ Contam Toxicol 217:75–140

    CAS  PubMed  Google Scholar 

  • Gautam RK, Mudhoo A, Lofrano G, Chattopadhyaya MC (2014) Biomass-derived biosorbents for metal ions sequestration: adsorbent modification and activation methods and adsorbent regeneration. J Environ Chem Eng 2(1):239–259

    CAS  Google Scholar 

  • Gohari M, Hosseini SN, Sharifnia S, Khatami M (2013) Enhancement of metal ion adsorption capacity of Saccharomyces cerevisiae’s cells by using disruption method. J Taiwan Inst Chem Eng 44(4):637–645

    CAS  Google Scholar 

  • Gomez R, Schnabel I, Garrido J (1988) Pellet growth and citric acid yield of Aspergillus niger 110. Enzyme Microb Technol 10(3):188–191

    CAS  Google Scholar 

  • Gopal M, Pakshirajan K, Swaminathan T (2002) Heavy metal removal by biosorption using Phanerochaete chrysosporium. Appl Biochem Biotechnol 102(1–6):227–237

    PubMed  Google Scholar 

  • Gulay B, Sema B, Yakup AM (2003) Biosorption of heavy metal ions on immobilized white-rot fungus Trametes versicolor. J Hazard Mater B101:285–300

    Google Scholar 

  • Hassan SW, El-Kassas HY (2012) Biosorption of cadmium from aqueous solutions using a local fungus Aspergillus cristatus (Glaucus Group). Afr J Biotech 11(9):2276–2286

    CAS  Google Scholar 

  • Hogan CM (2010), Heavy metal. In: Monosson E, Cleveland C (eds) Encyclopedia of earth. National Council for Science and the Environment, Washington, D.C.

    Google Scholar 

  • Ä°lhan S, Çabuk A, Filik C, ÇaliÅŸkan F (2004) Effect of pretreatment on biosorption of heavy metals by fungal biomass. Trak Univ J Sci 5(1):11–17

    Google Scholar 

  • Iram S, Perveen K, Shuja N, Waqar K, Akhtar I, Ahmad I (2013) Tolerance potential of different species of Aspergillusas bioremediation tool—comparative analysis. J Microbiol Res 1(1):001–008

    CAS  Google Scholar 

  • Iram S, Shabbir R, Zafar H, Javid M (2015) Biosorption and bioaccumulation of copper and lead by heavy metal-resistant fungal isolates. Arab J Sci Eng 40:1867–1873

    CAS  Google Scholar 

  • Iskandar NL, Zainudin NAIM, Tan SG (2011) Tolerance and biosorption of copper (Cu) and lead (Pb) by filamentous fungi isolated from a freshwater ecosystem. J Environ Sci 23(5):824–830

    CAS  Google Scholar 

  • Ismael AR, Víctor MM, Juan FC, María MZ (2003) Biosorption of As3+ from aqueous solutions by modified fungal biomass of Paecilomyces sp. Water Res 37:4544–4552

    Google Scholar 

  • Järup L (2003) Hazards of heavy metal contamination. Br Med Bull 68(1):167–182

    PubMed  Google Scholar 

  • Javaid A, Bajwa R (2007) Biosorption of Cr3+ ions from tannery wastewater by Pleurotus ostreatus. Mycopath 5:71–79

    Google Scholar 

  • Javaid A, Bajwa R (2008) Biosorption of electroplating heavy by some basidiomycetes. Mycopath 6(1–2):1–6

    Google Scholar 

  • Jha S, Dikshit SN, Pandey G (2012) Comparative study of growing/immobilized biomass verses resting biomass of Aspergillus lentulus for the effect of pH on Cu2+ metal removal. Res J Pharm Biol Chem Sci 3(3):421–427

    CAS  Google Scholar 

  • Kadirvelu K, Thamaraiselvi K, Namasivayam C (2001) Adsorption of Ni2+ from aqueous solution onto activated carbon prepared from coirpith. Spt Purif Technol 24:477–505

    Google Scholar 

  • Kang SY, Lee JU, Kim KW (2007) Biosorption of Cr3+and Cr6+ onto the cell surface of Pseudomonas aeruginosa. Biochem Eng J 36:54–58

    Google Scholar 

  • Kapoor A, Viraraghavan T, Cullimore DR (1999) Removal of heavy metals using the fungus Aspergillus niger. Bioresour Technol 70(1):95–104

    CAS  Google Scholar 

  • Kiran I, Akar T, Tunali S (2005) Biosorption of Pb2+and Cu2+ from aqueous solutions by pretreated biomass of Neurospora crassa. Process Biochem 40(11):3550–3558

    CAS  Google Scholar 

  • Kogez A, Pavko A (2001) Laboratory experiments of lead biosorption by self immobilized Rhizopus nigricans pellets in the stirred tank reactor and packed bed column. Chem Biochem Eng 15:75–79

    Google Scholar 

  • Kratochvil D, Pimentel P, Volesky B (1998) Removal of trivalent and hexavalent chromium by seaweed biosorption. Environ Sci Technol 32:2693–2698

    CAS  Google Scholar 

  • Kujan P, Prell A, Safar H, Sobotka M, Rezanka T, Holler P (2006) Use of the industrial yeast Candida utilis for cadmium sorption. Folia Microbiol 54(4):257–260

    Google Scholar 

  • Kulshreshtha A, Agrawal R, Barar M, Saxena S (2014) A review on bioremediation of heavy metals in contaminated water. IOSR J Environ Sci Toxicol Food Technol 8(7):44–50

    Google Scholar 

  • Kumar BM, Rao VG (2011) Removal of Cu2+ and Pb2+ ions from aqueous solutions by free, immobilized and co-immobilized cells of Saccharomyces cerevisiae and Lactobacillus sporogenes. Int J Sci Emerg Technol 2(3):80–86

    Google Scholar 

  • Kumar A, Bisht BS, Joshi VD (2010) Zinc and cadmium removal by acclimated Aspergillus niger: trained fungus for biosorption. Int J Environ Sci Res 1(1):27–30

    Google Scholar 

  • Kurniati E, Arfarita N, Imai T, Higuchi T, Kanno A, Yamamoto K, Sekine M (2014) Potential bioremediation of mercury contaminated substrate using filamentous fungi isolated from forest soil. J Environ Sci 26(6):1223–1231

    CAS  Google Scholar 

  • Li Q, Wu S, Liu G (2004) Simultaneous biosorption of Cd2+ and Pb2+ ions by pretreated biomass of Phanerochaete chrysosporium. Sep Purif Technol 34(1):135–142

    Google Scholar 

  • Luef E, Prey T, Kubicek CP (1991) Biosorption of zinc by fungal mycelial wastes. Appl Microbiol Biotechnol 34(5):688–692

    CAS  Google Scholar 

  • Malik A (2004) Metal bioremediation through growing cells. Environ Int 30:261–278

    CAS  PubMed  Google Scholar 

  • Mamisahebei S, Jahed Khaniki GR, Torabian A, Nasseri S, Naddafi K (2007) Removal of arsenic from an aqueous solution by pretreated waste tea fungal biomass. Iran J Environ Health Sci Eng 4(2):85–92

    Google Scholar 

  • Mapolelo M, Torto N (2004) Trace enrichment of metal ions in aquatic environments by Saccharomyces cerevisiae. Talanta 64:39–47

    CAS  PubMed  Google Scholar 

  • Marandi R, Ardejani FD, Afshar HA (2010) Biosorption of Pb2+ and Zn2+ ions by pretreated biomass of Phanerochaete chrysosporium. Int J Min Environ Issues 1(1):9–16

    Google Scholar 

  • Marques AM, Roca X, Simon-Pujol MD, Fuste MC, Congregado F (1991) Uranium accumulation by Pseudomonas sp. EPS-5028. Appl Microbiol Biotechnol 35:406–410

    CAS  PubMed  Google Scholar 

  • Martínez-Juárez VM, Cárdenas-González JF, Torre-Bouscoulet ME, Acosta-Rodríguez I (2012) Biosorption of Hg2+ from aqueous solutions onto fungal biomass. Bioinorg Chem Appl 2012:1–5

    Google Scholar 

  • Mashitah MD, Yus Azila Y, Bhatia S (2008) Biosorption of Cd2+ ions by immobilized cells of Pycnoporus sanguineus from aqueous solution. Biores Technol 99(11):4742–4748

    CAS  Google Scholar 

  • Maurya A, Verma T (2014) Concomitant bioremediation of Cr6+ and pentachlorophenol from the tannery effluent by immobilized Brevibacterium casei. IOSR J Eng 04(11):29–39

    Google Scholar 

  • Merrin JS, Sheela R, Saswathi N, Prakasham RS, Ramakrishna SV (1998) Biosorption of Cr6+ using Rhizopus arrhizus. Indian J Exp Biol 36:1052–1055

    CAS  Google Scholar 

  • Morley GF, Gadd GM (1995) Sorption of toxic metals by fungi and clay minerals. Mycol Res 99(12):1429–1438

    CAS  Google Scholar 

  • Mullen MD, Wolf DC, Beveridge TJ, Bailey GW (1992) Sorption of heavy metals by the soil fungi Aspergillus niger and Mucor rouxii. Soil Biol Biochem 24(2):129–135

    CAS  Google Scholar 

  • Munoz R, Alvarez MT, Munoz A, Terrazas E, Guieysse B, Mattisasson B (2006) Sequential removal of heavy metals ions and organic pollutants using an algal-bacterial consortium. Chemosphere 63:903–991

    CAS  PubMed  Google Scholar 

  • Muraleedharan TR, Venkobachar C (1990) Mechanism of biosorption of Cu6+ by Ganoderma lucidum. Biotechnol Bioeng 35:320–325

    CAS  PubMed  Google Scholar 

  • Murugavelh S, Mohanty K (2012) Bioreduction of hexavalent chromium by live and active Phanerochaete chrysosporium: kinetics and modelling. Clean Soil Air Water 40(7):746–751

    CAS  Google Scholar 

  • Murugesan GS, Sathishkumar M, Swaminathan K (2006) Arsenic removal from groundwater by pretreated waste tea fungal biomass. Biores Technol 97:483–487

    CAS  Google Scholar 

  • Omar NB, Merroun ML, Penalver JMA, Munaz TG (1997) Comparative heavy metal biosorption study of brewery yeast and Myxococcus xanthus biomasss. Chemosphere 35:2277–2283

    CAS  PubMed  Google Scholar 

  • Osman MS, Bandyopadhyay M (1999) Biosorption of Pb2+ ions from wastewater by using a fungus P. ostreatus. J Civil Eng 27(2):193–196

    Google Scholar 

  • Paknikar KM, Puranik PR, Pethkar AV (1999) Development of microbial biosorbents- a need for standardizations of experimental protocols. In: Amils R, Ballester A (eds) Biohydrometallurgy and the environment toward the mining of the 21st century. Part B: molecular biology, biosorption, bioremediation. Elsevier, Amsterdam, pp 363–373

    Google Scholar 

  • Park D, Yun YS, Park JM (2005) Use of dead fungal biomass for the detoxification of chromium: screen and kinetics. Process Biochem 40:2559–2565

    CAS  Google Scholar 

  • Parvathi K, Nagendran R, Nareshkumar R (2007) Effect of pH on chromium biosorption by chemically treated Saccharomyces cerevisiae. J Sci Indian Res 66:675–679

    CAS  Google Scholar 

  • Poopal AC, Laxman RS (2008) Hexavalent chromate reduction by immobilized Streptomyces griseus. Biotech Lett 30:1005–1010

    CAS  Google Scholar 

  • Prakasham RS, Merrie JS, Sheela R, Saswathi N, Ramakrishna SV (1999) Biosorption of Cr6+ by free and immobilized Rhizopus arrhizus. Environ Pollut 104:421–427

    CAS  Google Scholar 

  • Preetha B, Viruthagiri T (2005) Biosortion of Zn2+ by Rhizopus arrhizus: equilibrium and kinetic modeling. Afr J Biotechnol 4(6):506–508

    CAS  Google Scholar 

  • Puranik PR, Paknikar KM (1999) Biosorption of lead, cadmium, and zinc by Citrobacter strain MCMB-181: characterization studies. Biotechnol Prog 15:228–237

    CAS  PubMed  Google Scholar 

  • Purkayastha RP, Mitra AK (1992) Metal uptake by mycelia during submerged growth and by sporocarps of an edible fungus Volvariella volvacea. Indian J Exp Biol 30:1184–1187

    CAS  PubMed  Google Scholar 

  • Rahim MK, Mostafa C, Hossein M, Yusef KK, Shahin O (2012) Biosorption of Cd and Ni by inactivated bacteria isolated from agricultural soil treated with sewage sludge. Ecohydrol Hydrobiol 12:191–198

    Google Scholar 

  • Rehman A, Anjum MS (2010) Cadmium uptake by yeast, Candida tropicalis, isolated from industrial effluents and its potential use in wastewater clean-up operations. Water Air Soil Pollut 205:149–159

    CAS  Google Scholar 

  • Romanenko VI, Korenkov VN (1977) A pure culture of bacterial cells assimilating chromates and bichromates as hydrogen acceptors when grown under anaerobic conditions. Microbiology 46:414–417

    CAS  PubMed  Google Scholar 

  • Ross IS, Townsley CC (1986) The uptake of heavy metals by filamentous fungi, immobilisation of ions by biosorption. In: Eccles H, Humt S (eds) Horwood Publication, Elis

    Google Scholar 

  • Sag Y, Kustal T (1996) The selective biosorption of Cr6+ and Cu3+ ions from binary metal mixtures by R. arrhizus. Process Biochem 31:561–572

    CAS  Google Scholar 

  • Sag Y, Acikel U, Aksu Z, Kustal T (1998) A comparative study of the simultaneous biosorption of Cr6+ and Fe3+ on C. vulgaris and R. arrhizus: application of the competitive adsorption models. Process Biochem 33:273–281

    CAS  Google Scholar 

  • Saifuddin N, Raziah AZ (2007) Removal of heavy metals from industrial effluent using Saccharomyces cerevisiae (Baker’s yeast) immobilized in chitosan/lignosulphonate matrix. J Appl Sci Res 3(12):2091–2099

    CAS  Google Scholar 

  • Sallau AB, Inuwa HM, Ibrahim S, Nok AJ (2014) Isolation and properties of chromate reductase from Aspergillus niger. Int J Mod Cell Mol Biol 3(1):10–21

    Google Scholar 

  • Sarı A, Tuzen M (2009) Kinetic and equilibrium studies of biosorption of Pb2+ and Cd2+ from aqueous solution by macrofungus (Amanita rubescens) biomass. J Hazard Mater 164(2):1004–1011

    PubMed  Google Scholar 

  • Say R, Denizli A, Yakup Arıca M (2001) Biosorption of Cd2+, Pb2+ and Cu2+ with the filamentous fungus Phanerochaete chrysosporium. Bioresour Technol 76(1):67–70

    CAS  PubMed  Google Scholar 

  • Sen M, Dastidar MG (2011) Biosorption of Cr6+ by resting cells of Fusarium solani. Iran J Environ Health Sci Eng 8(2):153–158

    CAS  Google Scholar 

  • Sepehr MN, Nasseri S, Assadi MM, Yaghmaian K (2005) Chromium bioremoval from tannery industries by Aspergillus oryzae. Iran J Environ Health Sci Eng 2(4):273–279

    CAS  Google Scholar 

  • Sethi BK, Kanungo S, Rout JR, Nanda PK, Sahoo SL (2010) Effect of chromium on Mucor species and optimization of growth conditions. Nat Sci 8(4):29–32

    Google Scholar 

  • Shakya M, Sharma P, Meryem SS, Mahmood Q, Kumar A (2015) Heavy metal removal from industrial wastewater using fungi: uptake mechanism and biochemical aspects. J Environ Eng. https://doi.org/10.1061/(ASCE)EE.1943-7870.0000983

    Article  Google Scholar 

  • Sharma S, Adholeya A (2011) Detoxification and accumulation of chromium from tannery effluent and spent chrome effluent by Paecilomyces lilacinus fungi. Int Biodeterior Biodegrad 65(2):309–317

    CAS  Google Scholar 

  • Sharma DC, Forster CF (1993) Removal of hexavalent chromium using Sphagnum moss peat. Water Res 27:1201–1208

    CAS  Google Scholar 

  • Shazia I, Uzma Sadia GR, Talat A (2013) Bioremediation of heavy metals using isolates of filamentous fungus Aspergillus fumigatus collected from polluted soil of Kasur, Pakistan. Int Res J Biol Sci 2(12):66–73

    Google Scholar 

  • Shumate SE, Strandberg GW (1985) Accumulation of metals by microbial cells. In: Moo-Young M, Robinson CW, Howell JA (eds) Comprehensive biotechnology. Pergamon, New York, pp 235–247

    Google Scholar 

  • Simonesco CM, Ferdes M (2012) Fungal biomass for Cu2+ uptake from aqueous system. Pol J Environ Study 21(6):1831–1839

    Google Scholar 

  • Singh VP, Stapleton RD (2002) Biotransformation: bioremediation technology for health and environmental protection. Elsevier, Amsterdam

    Google Scholar 

  • Srinath T, Garg SK, Ramteke PW (2002) Chromium(VI) accumulation by Bacillus circulans: effect of various growth conditions. Indian J Microbiol 42:141–146

    Google Scholar 

  • Srinath T, Garg SK, Ramteke PW (2003) Biosorption and elution of Cr6+: a detoxification strategy. In: Roussos R, Soccol CR, Pandey A, Augus C (eds) New horizons in biotechnology. Kluwer Academic Publishers, Netherlands, pp 251–265

    Google Scholar 

  • Srivastava S, Thakur IS (2006) Biosorption potency of Aspergillus niger for removal of Cr6+. Curr Microbiol 53:232–237

    CAS  PubMed  Google Scholar 

  • Sugasini A, Rajagopal K, Banu N (2014) A study on biosorption potential of Aspergillus sp. of tannery effluent. Adv Biosci Biotechnol 5:853–860

    CAS  Google Scholar 

  • Sushera B, Maleeya K, Prayad P, Suchart U, Lanza GR (2007) Batch and continuous packed column studies of cadmium biosorption by Hydrilla verticillata biomass. J Biosci Bioeng 103(6):509–513

    Google Scholar 

  • Sutherland C, Venkobachar C (2010) A diffusion-chemisorption kinetic model for simulating biosorption using forest macro-fungus, fomes fasciatus. Int Res J Plant Sci 1(4):107–117

    Google Scholar 

  • ÅšwiÄ…tek MZ, Krzywonos M (2014) Potentials of biosorption and bioaccumulation processes for heavy metals removal. Pol J Environ Study 23(2):551–561

    Google Scholar 

  • Tay C, Liew H, Yong S, Surif S, Redzwan G, Talib SA (2012) Cu (II) removal onto fungal derived biosorbents: biosorption performance and the half saturation constant concentration approach. Int J Res Chem Environ 2(3):138–143

    CAS  Google Scholar 

  • Thakur IS (2006) Environmental biotechnology basic concepts and applications. IK International, New Delhi, India

    Google Scholar 

  • Thakur IS, Srivastava S (2011) Bioremediation and bioconversion of chromium and pentachlorophenol in tannery effluent by microorganisms. Int J Technol 3:224–233

    Google Scholar 

  • Tobin JM, Cooper DG, Neufeld RJ (1984) Uptake of metal ions by Rhizopus arrhizus biomass. Appl Environ Microbiol 47:821–824

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tomko J, Baèkor M, Å tofko M (2006) Biosorption of heavy metals by dry fungi biomass. Acta Metall Slovaca 12:447–451

    Google Scholar 

  • Tripathi M, Mishra SS, Tripathi VR, Garg SK (2011) Predictive approach for simultaneous biosorption of hexavalent chromium and pentachlorophenol degradation by Bacillus cereus RMLAU1. Afr J Biotech 10(32):6052–6061

    CAS  Google Scholar 

  • Tsekova K, Petrov G (2002) Removal of heavy metals from aqueous solution using Rhizopus delemar mycelia in free and polyurethane-bound form. Zeitschrift für Naturforsch 57c:629–633

    Google Scholar 

  • Tsekova K, Todorova D, Ganeva S (2010) Removal of heavy metals from industrial wastewater by free and immobilized cells of Aspergillus niger. Int Biodeterior Biodegrad 64(6):447–451

    CAS  Google Scholar 

  • Verma T, Singh N (2013) Isolation and process parameter optimization of Brevibacterium casei for simultaneous bioremediation of hexavalent chromium and pentachlorophenol. J Basic Microbiol 53:277–290

    CAS  PubMed  Google Scholar 

  • Verma T, Srinath T, Gadpayle R, Ramteke PW, Hans RK, Garg SK (2001) Chromate tolerant bacteria isolated from tannery effluents. Biores Technol 78:31–35

    CAS  Google Scholar 

  • Verma T, Ramteke PW, Garg SK (2004) Occurrence of chromium resistant thermotolerant coliforms in tannery effluent. Indian J Exp Biol 42:1112–1116

    CAS  PubMed  Google Scholar 

  • Verma T, Ramteke PW, Garg SK (2008) Quality assessment of treated tannery wastewater with special emphasis on pathogenic E. coli detection through serotyping. Environ Monit Assess 145:243–249

    CAS  PubMed  Google Scholar 

  • Verma T, Garg SK, Ramteke PW (2009) Genetic correlation between chromium resistance and reduction in Bacillus brevis isolated from tannery effluent. J Appl Microbiol 107:1425–1432

    CAS  PubMed  Google Scholar 

  • Vidali M (2001) Bioremediation an overview. Pure Appl Chem 73(7):1163–1172

    CAS  Google Scholar 

  • Vieira RHSF, Volesky B (2000) Biosorption: a solution to pollution. Int Microbiol 3:17–24

    CAS  PubMed  Google Scholar 

  • Vijayaraghavan K, Yun YS (2008) Bacterial biosorbents and biosorption. Biotechnol Adv 26:266–291

    CAS  PubMed  Google Scholar 

  • Volesky B, Holan ZR (1995) Biosorption of heavy metals. Biotechnol Prog 11:235–250

    CAS  PubMed  Google Scholar 

  • Wang JL, Chen C (2006) Biosorption of heavy metals by Saccharomyces cerevisiae: a review. Biotechnol Adv 24(5):427–451

    CAS  PubMed  Google Scholar 

  • Weber WJ Jr (1985) Adsorption theory, concepts and models. In: Slejko FL (ed) Adsorption technology: a step-by-step approach to process evaluation and application. Marcel Dekker, New York, pp 1–35

    Google Scholar 

  • Xu P, Zeng G, Huang D, Hu S, Feng C, Lai C, Zhao M, Huang C, Li N, Wei ZZ, Xie G (2013) Synthesis of iron oxide nanoparticles and their application in Phanerochaete chrysosporium immobilization for Pb2+ removal. Colloids Surf A 419:147–155

    Google Scholar 

  • Yan G, Viraraghavan T (2003) Heavy-metal removal from aqueous solution by fungus Mucor rouxii. Water Res 37(18):4486–4496

    CAS  PubMed  Google Scholar 

  • Zeng XX, Chai LY, Tang JX, Liu XD, Yang ZH (2013) Taxonomy characterization and cadmium biosorption of fungus strain. Trans Nonferrous Met Soc China 23(9):2759–2765

    CAS  Google Scholar 

  • Zhang D, Jipengwang Zeng X, Falandysz J (2011) Competitive sorption efficiency studies of Cd2+, Cu2+ and Pb2+ by powdered mycelium of cloud ear fungus. J Environ Sci Health 46:1776–1782

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Satyendra Kumar Garg .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Verma, T., Maurya, A., Tripathi, M., Garg, S.K. (2017). Mycoremediation: An Alternative Treatment Strategy for Heavy Metal-Laden Wastewater. In: Satyanarayana, T., Deshmukh, S., Johri, B. (eds) Developments in Fungal Biology and Applied Mycology. Springer, Singapore. https://doi.org/10.1007/978-981-10-4768-8_17

Download citation

Publish with us

Policies and ethics