Micro-Raman and FTIR Analysis of Silicon Carbo-Nitride Thin Films at Different H2 Flow Rate

  • Dhruva Kumar
  • Umesh Rizal
  • Soham Das
  • Bhabani S. Swain
  • Bibhu Prasad Swain
Conference paper
Part of the Lecture Notes in Electrical Engineering book series (LNEE, volume 443)

Abstract

Silicon carbo-nitride thin films were deposited on Si (100) substrate by thermal chemical vapour deposition using C2H2 and Si powder precursors. The thin films were characterized by scanning electron microscope (SEM), Fourier transform infrared spectroscopy and Raman spectroscopy. The FTIR spectra reveals the presence of vibration signature of various bonds at 512, 1135, 1688, 2444, 3032, 3550 cm−1 which correspond to Si–N, SiC–N, C–N, Si–H, C–H and N–H, respectively, in the SiCN thin films. Raman spectra reveal the presence of three prominent stoke shifts at 617, 1141 and 1648 cm−1 corresponding to Si–H, SiC–N and C–C respectively. The vibrational signature of SiC–N shifted from 1126 to 1050 cm−1 with increase in H2 flow rate indicates formation of nanosized cluster in deposited thin film .

Keywords

Thermal CVD SiCN Raman FTIR 

References

  1. 1.
    Ryu, H., Wang, Q., Raj, R.: Ultrahigh-temperature semiconductors made from polymer-derived ceramics. J. Am. Ceram. Soc. 93, 1668–1676 (2010)Google Scholar
  2. 2.
    Bhattacharyya, A., Mishra, S., Mukherjee, S., Das, G.: A comparative study of Si–C–N films on different substrates grown by RF magnetron sputtering. J. Alloys Compd. 478, 474–478 (2009)CrossRefGoogle Scholar
  3. 3.
    Bai, X., Zhang, C., Tao, A.: Superhard multilayers and nanocomposite coatings. Prog. Nat. Sci. 105, 97–107 (2005)Google Scholar
  4. 4.
    Hoche, H., Pusch, C., Riedel, R., Fasel, C., Klein, A.: Properties of SiCN coatings for high temperature applications—comparison of RF-, DC- and HPPMS-sputtering. Surf. Coat. Technol. 205, S21–S27 (2010)CrossRefGoogle Scholar
  5. 5.
    Leo, A., Andronenko, S., Stiharu, I., Bhat, R.: Characterization of thick and thin film SiCN for pressure sensing at high temperatures. Sensors 10, 1338–1354 (2010)CrossRefGoogle Scholar
  6. 6.
    Chen, Y., Li, C., Wang, Y., Zhang, Q., Xu, C., Weid, B., An, L.: Self-assembled carbon–silicon carbonitride nanocomposites: high-performance anode materials for lithium-ion batteries. J. Mater. Chem. 21, 18186–18190 (2011)CrossRefGoogle Scholar
  7. 7.
    Mera, G., Riedel, R., Poli, F., Müller, K.: Carbon-rich SiCN ceramics derived from phenyl-containing poly (silylcarbodiimides). J. Eur. Ceram. Soc. 29, 2873–2883 (2009)CrossRefGoogle Scholar
  8. 8.
    Fainer, N., Golubenko, A., Rumyantsev, Y., Kesler, V., Ayupov, B., Rakhlin, V., Voronkove, M.: Tris (diethylamino) silane—a new precursor compound for obtaining layers of silicon carbonitride. Glass Phys. Chem 38, 15–26 (2012)CrossRefGoogle Scholar
  9. 9.
    Wang, Y., Ding, J., Feng, W., An, L.: Effect of pyrolysis temperature on the piezoresistivity of polymer-derived ceramics. J. Am. Ceram. Soc. 94, 359–362 (2011)CrossRefGoogle Scholar
  10. 10.
    Mera, G., Tamayo, A., Nguyen, H., Sen, S., Riedel, R.: Nanodomain structure of carbon-rich silicon carbonitride polymer-derived ceramics. J. Am. Ceram. Soc. 93, 1169–1175 (2010)CrossRefGoogle Scholar
  11. 11.
    Chen, Y., Yang, X., Cao, Y., Gan, Z., An, L.: Quantitative study on structural evolutions and associated energetics inpolysilazane-derived amorphous silicon carbonitride ceramics. Acta Mater. 72, 22–31 (2014)CrossRefGoogle Scholar
  12. 12.
    Prasad, R., Meraa, G., Morita, K., Müller, M., Kleebe, H., Gurlo, A., Fasel, C., Riedel, R.: Thermal decomposition of carbon-rich polymer-derived silicon carbonitrides leading to ceramics with high specific surface area and tunablemicro- and mesoporosity. J. Eur. Ceram. Soc. 32, 477–484 (2012)CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  • Dhruva Kumar
    • 1
    • 2
  • Umesh Rizal
    • 1
  • Soham Das
    • 1
    • 2
  • Bhabani S. Swain
    • 3
  • Bibhu Prasad Swain
    • 1
  1. 1.Department of Mechanical EngineeringSikkim Manipal Institute of TechnologyMajitarIndia
  2. 2.Centre for Material Science and Nano TechnologySikkim Manipal Institute of TechnologyMajitarIndia
  3. 3.Advanced Material ProcessingKookmin UniversitySeoulRepublic of Korea

Personalised recommendations