The Study of GPR with Conducting Surfaces to Determine the Operating Frequency in Single-Fold Reflection Profiling

  • Amitansu PattanaikEmail author
  • Rajat Sharma
Conference paper
Part of the Lecture Notes in Electrical Engineering book series (LNEE, volume 443)


Mapping of different soil surfaces is possible by the means of ground penetrating radar (GPR). To optimise the interpretation of such radar surveys carried out at various sites, we turned our attention to the accuracy of GPR on different geophysical surfaces. The properties of soil significantly influence the GPR performance, modifying, in particular, the propagation velocity, skin depth, phase constant and attenuation. Thus, setting the parameters for a GPR survey is not easy. Also, it is difficult to decide the right operating frequency for GPR operations. In order to get a higher penetration depth, the user will have to compromise with the resolution of the GPR or vice versa. Here, we try to estimate an appropriate operating frequency for GPR survey, if the properties of the soil are known.


Ground penetrating radar GPR Single-fold reflection profiling Propagation velocity Skin depth 


  1. 1.
    Senson, A.K.: Applications of ground penetrating radar in assessing some geological hazards: example of ground contamination, faults, cavities. J. Appl. Geophys. 33, 177–193 (1995)CrossRefGoogle Scholar
  2. 2.
    Bui, D.T., Pradhan, B., Lofman, O., Revhaug, I., Dick, O.B.: Spatial prediction of landslide hazards in Hoa province (Vietnam): a comparative assessment of the efficacy of evidential belief functions and fuzzy logic models. Catena 96, 28–40 (2012)CrossRefGoogle Scholar
  3. 3.
    Wiegand, C., Kringer, K., Geitner, C., Rutzinger, M.: Regolith structure analysis—a contribution to understanding the local occurrence of shallow landslides (Austrian Tyrol). Geomorphology 183, 5–13 (2013)CrossRefGoogle Scholar
  4. 4.
    Beauvais, A., Ritz, M., Parisot, J.-C., Bantsimba, C., Dukhan, M.: Combined ERT and GPR methods for investigating two-stepped lateritic weathering systems. Geoderma 119, 121–132 (2004)CrossRefGoogle Scholar
  5. 5.
    Daniels, J.J., Roberts, R., Vendl, M.: Ground penetrating radar for the detection of liquid contaminants. J. Appl. Geophys. 33, 195–207 (1995)CrossRefGoogle Scholar
  6. 6.
    Kruse, S.E., Schneider, J.C., Campagna, D.J., Inman, J.A., Hicey, T.D.: Ground penetrating radar imaging of cap rock, caliche and carbonate strata. J. Appl. Geophys. 43, 239–249 (2000)CrossRefGoogle Scholar
  7. 7.
    Aranha, P.R.A., Augustin, C.H.R.R., Sobeira, F.G.: The use of GPR for characterizing underground weathered profiles in the sub-humid tropics. J. Appl. Geophys. 49, 195–210 (2002)CrossRefGoogle Scholar
  8. 8.
    Diamanti, N., Peter Annan, A.: Characterizing the energy distribution around GPR antenna. J. Appl. Geophys. 99, 83–90 (2013)CrossRefGoogle Scholar
  9. 9.
    Jiao, Y., McMechan, G.A., Pettinelli, E.: In situ 2D and 3D measurements of radiation patterns of half-wave dipole GPR antennas. J. Appl. Geophys. 43, 69–89 (2000)CrossRefGoogle Scholar
  10. 10.
    Chen, H.-W., Huang, T.-M.: Finite-difference time-domain simulation of GPR data. J. Appl. Geophys. 40, 139–163 (1998)CrossRefGoogle Scholar
  11. 11.
    Cassidy, N.J., Millington, T.M.: The application of finite-difference time-domain modelling for the assessment of GPR in magnetically lossy materials. J. Appl. Geophys. 57, 295–308 (2009)Google Scholar
  12. 12.
    Lai, W.L., Kind, T., Wiggenhauser, H.: Using ground penetrating radar and time-frequency analysis to characterize construction materials. NDT&E Int. 44, 111–120 (2011)CrossRefGoogle Scholar
  13. 13.
    Mahmoudzadeh, M.R., Frances, A.P., Lubczynski, M., Lambot, S.: Using ground penetrating radar to investigate the water table depth in weathered granites—Sardon case study, Spain. J. Appl. Geophys. 79, 17–25 (2012)CrossRefGoogle Scholar
  14. 14.
    Doolittle, J.A., Collins, M.E.: Use of soil information to determine application of ground penetrating radar. J. Appl. Geophys. 33, 101–108 (1995)CrossRefGoogle Scholar
  15. 15.
    Reppert, P.M., Dale Morgen, F., Nafi Toksoz, M.: Dielectric constant determination using ground penetrating radar reflection coefficients. J. Appl. Geophys. 43, 189–197 (2000)CrossRefGoogle Scholar
  16. 16.
    Von Hippel, A.R.: Dielectric Materials and Application: Dielectric Materials and Applications. MIT press, Cambridge (1954)Google Scholar
  17. 17.
    Lazaro-Macilla, O., Gomez Trevino, E.: Ground penetrating radar inversion in 1D: an approach for the estimation of electric conductivity, dielectric permeability. J. Appl. Phys. 43, 199–213 (2000)Google Scholar
  18. 18.
    Stratton, J.A.: Electromagnetic Theory, International Series in Pure and Applied Physics, p. 615. McGraw-Hill Book co. (1941)Google Scholar
  19. 19.
    Hatch, M.A., Heinson, G., Munday, T., Thiel, S., Lawrie, K., Clarke, J.D.A., Mill, P.: The importance of including conductivity and dielectric permittivity information when processing low-frequency GPR and high-frequency EMI data sets. J. Appl. Geophys. 95, 75–87 (2013)Google Scholar
  20. 20.
    Tsui, F., Matthews, S.L.: Analytical modelling of the dielectric properties of concrete for subsurface radar applications. Constr. Build. Mater. 11(3), 149–161 (1997)CrossRefGoogle Scholar
  21. 21.
    Saarenketo, Timo: Electrical properties of water in clay and silty soils. J. Appl. Geophys. 40, 73–88 (1983)CrossRefGoogle Scholar
  22. 22.
    Eaves, J.L., Reedy, E.K.: Principles of Modern Radar, pp. 226–228, 409–420. Van Nostrand Reinhold Company, New York (1987)Google Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  1. 1.Defence Terrain Research Laboratory (DTRL)DRDODelhiIndia
  2. 2.Department of PhysicsAlagappa UniversityKaraikudiIndia

Personalised recommendations