Skip to main content

Control Method for EHD Printing

  • Chapter
  • First Online:
  • 1066 Accesses

Abstract

In this chapter, we will introduce the control methods which are used in the processes of EHD printing. In Sect. 6.1, we review the foundational concepts of control systems applied in the electrospinning processes. In Sect. 6.2, we propose a control scheme of electrospinning sedimentary microstructure by tuning substrate linear motion velocity. In Sect. 6.3, we develop a  control system of the electrospinning processes for fiber diameter by tuning the voltage. Concluding remarks are drawn in Sect. 6.4.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   129.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   129.00
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Jaworek A, Sobczyk AT (2008) Electrospraying route to nanotechnology: an overview. J Electrostat 66(3):197–219

    Article  Google Scholar 

  2. Tay A, Ho WK, Xu X (2010) Equipment design and control of advanced thermal-processing module in lithography. IEEE Trans Industr Electron 57(3):1112–1119

    Article  Google Scholar 

  3. Huang YA, Duan Y, Ding Y, Bu N, Pan Y, Lu N, Yin Z (2014) Versatile, kinetically controlled, high precision electrohydrodynamic writing of micro/nanofibers. Sci Rep 4:5949

    Article  Google Scholar 

  4. Huang PH, Xiao W, Peng CH, Kirtley JL (2016) Comprehensive parameterization of solar cell: improved accuracy with simulation efficiency. IEEE Trans Industr Electron 63(3):1549–1560

    Article  Google Scholar 

  5. Wang J, Xu D, Tan M, Liu Y (2009) Control strategy for a low cost manipulator to transport and align ic mask-plates. IEEE Trans Control Syst Technol 17(5):1018–1027

    Article  Google Scholar 

  6. Teng KF, Vest RW (1988) A microprocessor-controlled ink jet printing system for electronic circuits. IEEE Trans Industr Electron 35(3):407–412

    Article  Google Scholar 

  7. Warnick SC, Dahleh MA (1998) Feedback control of MOCVD growth of submicron compound semiconductor films. IEEE Trans Control Syst Technol 6(1):62–71

    Article  Google Scholar 

  8. Zhang HT, Wang Q, Chen ZY, Wei FL (2017) Dynamics and feedback control of electrospinning processes. IEEE Trans Control Syst Technol 25(2):611–618

    Article  Google Scholar 

  9. Zhang HT, Ren GP, Wu Y, Sun HW, Huang J, Yin Z, Yuan Y (2017) Electrospinning sedimentary microstructure feedback control by tuning substrate linear machine velocity. IEEE Trans Industr Electron 64(11):8686–8694

    Google Scholar 

  10. Bu N, Huang Y, Deng H, Yin Z (2012) Tunable bead-on-string microstructures fabricated by mechano-electrospinning. J Phys D Appl Phys 45(40):40531

    Article  Google Scholar 

  11. Fan J, Yau DKY, Elmagarmid AK, Aref WG (2001) Automatic image segmentation by integrating color-edge extraction and seeded region growing. IEEE Trans Image Process 10(10):1454–1466

    Article  MATH  Google Scholar 

  12. Dagdeviren C, Su Y, Joe P, Yona R, Liu Y, Kim YS, Huang YA, Damadoran AR, Xia J, Martin LW, Huang Y, Rogers JA (2014) Conformable amplified lead zirconate titanate sensors with enhanced piezoelectric response for cutaneous pressure monitoring. Nat Commun 5:4456

    Article  Google Scholar 

  13. Gomez JC, Baeyens E (2004) Identification of block-oriented nonlinear systems using orthonormal bases. J Process Control 14(6):685–697

    Article  Google Scholar 

  14. Yu H, Xie T, Paszczynski S, Wilamowski BM (2011) Advantages of radial basis function networks for dynamic system design. IEEE Trans Industr Electron 58(12):5438–5450

    Article  Google Scholar 

  15. Ibrahim M, Steiner NY, Jemei S, Hissel D (2016) Wavelet-based approach for online fuel cell remaining useful lifetime prediction. IEEE Trans Industr Electron 63(8):5057–5068

    Google Scholar 

  16. Zhang HT, Li HX, Chen G (2008) Dual-mode predictive control algorithm for constrained Hammerstein systems. Int J Control 81(10):1609–1625

    Article  MathSciNet  MATH  Google Scholar 

  17. Zhang HT, Wu Y, He D, Zhao H (2015) Model predictive control to mitigate chatters in milling processes with input constraints. Int J Mach Tools Manuf 91:54–61

    Article  Google Scholar 

  18. Yuan Y, Zhang HT, Wu Y, Zhu T, Ding H (2017) Bayesian learning-based model predictive vibration control for thin-walled workpiece machining processes. IEEE/ASME Trans Mechatron 22(1):509–520

    Article  Google Scholar 

  19. Zhou K, Doyle JC, Glover K (1996) Robust and optimal control. Prentice Hall, Upper Saddle River

    Google Scholar 

  20. Cannon M, Kouvaritakis B (2005) Optimizing prediction dynamics for robust MPC. IEEE Trans Autom Control 50(11):1892–1897

    Article  MathSciNet  MATH  Google Scholar 

  21. Sawma J, Khatounian F, Monmasson E, Idkhajine L (2016) Cascaded dual-model-predictive control of an active front-end rectifier. IEEE Trans Industr Electron 63(7):4604–4614

    Article  Google Scholar 

  22. Nesterovand Y, Nemirovskii A (1994) Interior-point polynomial algorithms in convex programming. SIAM, Philadelphia, PA

    Book  Google Scholar 

  23. Lofberg J (2004) YALMIP: a toolbox for modeling and optimization in MATLAB. IEEE Int Symp Comput Aided Control Syst Des. https://doi.org/10.1109/CACSD.2004.1393890

    Google Scholar 

  24. Zhang HT, Chen MZQ, Chen Z (2010) Nonlinear Laguerre-Volterra observer-controller and its application to process control. Int J Robust Nonlinear Control 20(4):412–423

    MathSciNet  MATH  Google Scholar 

  25. Wu DC, Du ZL, Gao XS (2003) Nano fibers. Chemical Industrial Press, Beijing

    Google Scholar 

  26. Maciejowski JM (2002) Predictive control: with constraint. Pearson Education

    Google Scholar 

  27. Huang YA, Bu N, Duan Y, Pan Y, Liu H, Yin Z, Xiong Y (2013) Electrohydrodynamic direct-writing. Nanoscale 5(24):12007–12017

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhouping Yin .

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Yin, Z., Huang, Y., Duan, Y., Zhang, H. (2018). Control Method for EHD Printing. In: Electrohydrodynamic Direct-Writing for Flexible Electronic Manufacturing. Springer, Singapore. https://doi.org/10.1007/978-981-10-4759-6_6

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-4759-6_6

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-4758-9

  • Online ISBN: 978-981-10-4759-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics