Skip to main content
  • 1392 Accesses

Abstract

As an extra introduced electric field, the electrohydrodynamic (EHD) printing is a “pull” processing that can realize three types of printing modes via a same setup, namely E-jet printing, electrospinning, and electrospraying. Among them, the electrospinning is rather versatile for producing ultra-thin fibers with diameters ranging from several micrometers down to dozens of nanometers of over one hundred different materials. By carefully adjusting the process parameters, controlled alignment and patterning of individual micro/nanowires can be easily achieved at a desired position in a large area. This technique shows a great potential in the fabrication of high performance organic electronics such as organic field-effect transistors, stretchable sensors, stretchable energy harvesters and touch screens, in a cost-effective and ingenious nanomanufacturing.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.00
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Wong WS, Salleo A (2009) Flexible electronics: materials and applications, vol 11. Springer Science & Business Media

    Google Scholar 

  2. Reuss RH, Chalamala BR, Moussessian A, Kane MG, Kumar A, Zhang DC, Rogers JA, Hatalis M, Temple D, Moddel G, Eliasson BJ, Estes MJ, Kunze J, Handy ES, Harmon ES, Salzman DB, Woodall JM, Alam MA, Murthy JY, Jacobsen SC, Olivier M, Markus D, Campbell PM, Snow E (2005) Macroelectronics: perspectives on technology and applications. P Ieee 93(7):1239–1256

    Article  Google Scholar 

  3. Jang J (2006) Displays develop a new flexibility. Mater Today 9(4):46–52

    Article  Google Scholar 

  4. Krebs FC (2009) Fabrication and processing of polymer solar cells: a review of printing and coating techniques. Sol Energ Mat Sol C 93(4):394–412

    Article  Google Scholar 

  5. Someya T, Kato Y, Sekitani T, Iba S, Noguchi Y, Murase Y, Kawaguchi H, Sakurai T (2005) Conformable, flexible, large-area networks of pressure and thermal sensors with organic transistor active matrixes. Proc Natl Acad Sci U S A 102(35):12321–12325

    Article  Google Scholar 

  6. Madden PGA (2003) Development and modeling of conducting polymer actuators and the fabrication of a conducting polymer based feedback loop. Massachusetts Institute of Technology

    Google Scholar 

  7. Yin ZP, Huang YA, Bu NB, Wang XM, Xiong YL (2010) Inkjet printing for flexible electronics: materials, processes and equipments. Chin Sci Bull 55(30):3383–3407

    Article  Google Scholar 

  8. Menard E, Meitl MA, Sun YG, Park JU, Shir DJL, Nam YS, Jeon S, Rogers JA (2007) Micro- and nanopatterning techniques for organic electronic and optoelectronic systems. Chem Rev 107(4):1117–1160

    Article  Google Scholar 

  9. Engstrom DS, Porter B, Pacios M, Bhaskaran H (2014) Additive nanomanufacturing—a review. J Mater Res 29(17):1792–1816

    Article  Google Scholar 

  10. Paul KE, Wong WS, Ready SE, Street RA (2003) Additive jet printing of polymer thin-film transistors. Appl Phys Lett 83(10):2070

    Article  Google Scholar 

  11. Jaworek A, Sobczyk AT (2008) Electrospraying route to nanotechnology: an overview. J Electrostat 66(3–4):197–219

    Article  Google Scholar 

  12. Basaran OA (2002) Small-scale free surface flows with breakup: drop formation and emerging applications. AIChE J 48(9):1842–1848

    Article  Google Scholar 

  13. Choi J, Kim YJ, Lee S, Son SU, Ko HS, Nguyen VD, Byun D (2008) Drop-on-demand printing of conductive ink by electrostatic field induced inkjet head. Appl Phys Lett 93(19):193508

    Article  Google Scholar 

  14. Jaworek A (2007) Electrospray droplet sources for thin film deposition. J Mater Sci 42(1):266–297

    Article  Google Scholar 

  15. Pan YQ, Huang YA, Bu NB, Yin ZP (2013) Fabrication of Si-nozzles for parallel mechano-electrospinning direct writing. J Phys D Appl Phys 46(25)

    Google Scholar 

  16. Huang YA, Bu NB, Duan YQ, Pan YQ, Liu HM, Yin ZP, Xiong YL (2013) Electrohydrodynamic direct-writing. Nanoscale 5(24):12007–12017

    Article  Google Scholar 

  17. Katta P, Alessandro M, Ramsier RD, Chase GG (2004) Continuous electrospinning of aligned polymer nanofibers onto a wire drum collector. Nano Lett 4(11):2215–2218

    Article  Google Scholar 

  18. Teo WE, Ramakrishna S (2005) Electrospun fibre bundle made of aligned nanofibers over two fixed points. Nanotechnology 16(9):1878–1884

    Article  Google Scholar 

  19. Yang LB, Yuan WZ, Zhao JH, Ai F, Chen XY, Zhang YM (2012) A novel approach to prepare uniaxially aligned nanofibers and longitudinally aligned seamless tubes through electrospinning. Macromol Mater Eng 297(7):604–608

    Article  Google Scholar 

  20. Chaurey V, Chiang PC, Polanco C, Su YH, Chou CF, Swami NS (2010) Interplay of electrical forces for alignment of sub-100 nm electrospun nanofibers on insulator gap collectors. Langmuir 26(24):19022–19026

    Article  Google Scholar 

  21. Zhang DM, Chang J (2007) Patterning of electrospun fibers using electroconductive templates. Adv Mater 19(21):3664–3667

    Google Scholar 

  22. Xin Y, Reneker DH (2012) Hierarchical polystyrene patterns produced by electrospinning. Polymer 53(19):4254–4261

    Article  Google Scholar 

  23. Cui XJ, Li LM, Xu F (2011) Controlled assembly of poly(vinyl pyrrolidone) fibers through an electric-field-assisted electrospinning method. Appl Phys A Mater 103(1):167–172

    Article  Google Scholar 

  24. Kessick R, Tepper G (2004) Microscale polymeric helical structures produced by electrospinning. Appl Phys Lett 84(23):4807–4809

    Article  Google Scholar 

  25. Bu NB, Huang YA, Wang XM, Yin ZP (2012) Continuously tunable and oriented nanofiber direct-written by mechano-electrospinning. Mater Manuf Process 27(12):1318–1323

    Article  Google Scholar 

  26. Sun DH, Chang C, Li S, Lin LW (2006) Near-field electrospinning. Nano Lett 6(4):839–842

    Article  Google Scholar 

  27. Gupta A, Seifalian AM, Ahmad Z, Edirisinghe MJ, Winslet MC (2007) Novel electrohydrodynamic printing of nanocomposite biopolymer scaffolds. J Bioact Compat Pol 22(3):265–280

    Article  Google Scholar 

  28. Jang D, Kim D, Moon J (2009) Influence of fluid physical properties on ink-jet printability. Langmuir 25(5):2629–2635

    Article  Google Scholar 

  29. Bergeron V, Bonn D, Martin JY, Vovelle L (2000) Controlling droplet deposition with polymer additives. Nature 405(6788):772–775

    Article  Google Scholar 

  30. Magdassi S, Bassa A, Vinetsky Y, Kamyshny A (2003) Silver nanoparticles as pigments for water-based ink-jet inks. Chem Mater 15(11):2208–2217

    Article  Google Scholar 

  31. Lee HH, Chou KS, Huang KC (2005) Inkjet printing of nanosized silver colloids. Nanotechnology 16(10):2436–2441

    Article  Google Scholar 

  32. Mabrook MF, Pearson C, Jombert AS, Zeze DA, Petty MC (2009) The morphology, electrical conductivity and vapour sensing ability of inkjet-printed thin films of single-wall carbon nanotubes. Carbon 47(3):752–757

    Article  Google Scholar 

  33. Wei T, Ruan J, Fan ZJ, Luo GH, Wei F (2007) Preparation of a carbon nanotube film by ink-jet printing. Carbon 45(13):2712–2716

    Article  Google Scholar 

  34. Dror Y, Salalha W, Khalfin RL, Cohen Y, Yarin AL, Zussman E (2003) Carbon nanotubes embedded in oriented polymer nanofibers by electrospinning. Langmuir 19(17):7012–7020

    Article  Google Scholar 

  35. Reichmanis E, Katz H, Kloc C, Maliakal A (2005) Plastic electronic devices: from materials design to device applications. Bell Labs Tech J 10(3):87–105

    Article  Google Scholar 

  36. Chronakis IS, Grapenson S, Jakob A (2006) Conductive polypyrrole nanofibers via electrospinning: electrical and morphological properties. Polymer 47(5):1597–1603

    Article  Google Scholar 

  37. Yang YJ, Jiang YD, Xu JH, Yu JS (2007) Conducting PEDOT-PSS composite films assembled by LB technique. Colloid Surf A 302(1–3):157–161

    Google Scholar 

  38. Xie XL, Mai YW, Zhou XP (2005) Dispersion and alignment of carbon nanotubes in polymer matrix: a review. Mat Sci Eng R 49(4):89–112

    Article  Google Scholar 

  39. Jeong J, Jeon S, Lee T, Park J, Shin J, Alegaonkar P, Berdinsky A, Yoo J (2006) Fabrication of MWNTs/nylon conductive composite nanofibers by electrospinning. Diam Relat Mater 15(11):1839–1843

    Article  Google Scholar 

  40. Kim SY, Kim Y, Park J, Hwang J (2010) Design and evaluation of single nozzle with a non-conductive tip for reducing applied voltage and pattern width in electrohydrodynamic jet printing (EHDP). J Micromech Microeng 20(5)

    Google Scholar 

  41. Wang L, Qiu Y, Pei Y, Su Y, Zhan Z, Lv W, Sun D (2011) A novel electrohydrodynamic printing jet head with retractable needle. Proc Inst Mech Eng Part N: J Nanoeng Nanosyst 225(2):85–88

    Google Scholar 

  42. Li D, Xia YN (2004) Direct fabrication of composite and ceramic hollow nanofibers by electrospinning. Nano Lett 4(5):933–938

    Article  Google Scholar 

  43. Zhou FL, Hubbard PL, Eichhorn SJ, Parker GJM (2011) Jet deposition in near-field electrospinning of patterned polycaprolactone and sugar-polycaprolactone core-shell fibres. Polymer 52(16):3603–3610

    Article  Google Scholar 

  44. Moghe AK, Gupta BS (2008) Co-axial electrospinning for nanofiber structures: preparation and applications. Polym Rev 48(2):353–377

    Article  Google Scholar 

  45. Yang HF, Lightner CR, Dong L (2012) Light-emitting coaxial nanofibers. Acs Nano 6(1):622–628

    Article  Google Scholar 

  46. Ahmad Z, Zhang HB, Farook U, Edirisinghe M, Stride E, Colombo P (2008) Generation of multilayered structures for biomedical applications using a novel tri-needle coaxial device and electrohydrodynamic flow. J R Soc Interface 5(27):1255–1261

    Article  Google Scholar 

  47. Chen HY, Wang N, Di JC, Zhao Y, Song YL, Jiang L (2010) Nanowire-in-microtube structured core/shell fibers via multifluidic coaxial electrospinning. Langmuir 26(13):11291–11296

    Article  Google Scholar 

  48. Zhao Y, Cao XY, Jiang L (2007) Bio-mimic multichannel microtubes by a facile method. J Am Chem Soc 129(4):764–765

    Article  Google Scholar 

  49. Gomez JC, Baeyens E (2004) Identification of block-oriented nonlinear systems using orthonormal bases. J Process Contr 14(6):685–697

    Article  Google Scholar 

  50. Reneker DH, Yarin AL (2008) Electrospinning jets and polymer nanofibers. Polymer 49(10):2387–2425

    Article  Google Scholar 

  51. Han T, Reneker DH, Yarin AL (2007) Buckling of jets in electrospinning. Polymer 48(20):6064–6076

    Article  Google Scholar 

  52. Brun PT, Audoly B, Ribe NM, Eaves TS, Lister JR (2015) Liquid ropes: a geometrical model for thin viscous jet instabilities. Phys Rev Lett 114(17)

    Google Scholar 

  53. Brown TD, Dalton PD, Hutmacher DW (2011) Direct writing by way of melt electrospinning. Adv Mater 23(47):5651–5657

    Google Scholar 

  54. Duan YQ, Huang YA, Yin ZP, Bu NB, Dong WT (2014) Non-wrinkled, highly stretchable piezoelectric devices by electrohydrodynamic direct-writing. Nanoscale 6(6):3289–3295

    Article  Google Scholar 

  55. Huang YA, Duan YQ, Ding YJ, Bu NB, Pan YQ, Lu NS, Yin ZP (2014) Versatile, kinetically controlled, high precision electrohydrodynamic writing of micro/nanofibers. Sci Rep-UK 4

    Google Scholar 

  56. Sundaray B, Subramanian V, Natarajan TS, Xiang RZ, Chang CC, Fann WS (2004) Electrospinning of continuous aligned polymer fibers. Appl Phys Lett 84(7):1222–1224

    Article  Google Scholar 

  57. Wu YQ, Johannes MS, Clark RL (2008) AFM-based voltage assisted nanoelectro spinning. Mater Lett 62(4–5):699–702

    Article  Google Scholar 

  58. Zheng G, Li W, Wang X, Wu D, Sun D, Lin L (2010) Precision deposition of a nanofiber by near-field electrospinning. J Phys D Appl Phys 43(41):415501

    Article  Google Scholar 

  59. Chang C, Limkrailassiri K, Lin LW (2008) Continuous near-field electrospinning for large area deposition of orderly nanofiber patterns. Appl Phys Lett 93(12):123111

    Article  Google Scholar 

  60. Huang YA, Wang XM, Duan YQ, Bu NB, Yin ZP (2012) Controllable self-organization of colloid microarrays based on finite length effects of electrospun ribbons. Soft Matter 8(32):8302–8311

    Article  Google Scholar 

  61. Bu N, Huang Y, Deng H, Yin Z (2012) Tunable bead-on-string microstructures fabricated by mechano-electrospinning. J Phys D Appl Phys 45(40):405301

    Article  Google Scholar 

  62. Bu N, Huang Y, Wang X, Yin Z (2012) Continuously tunable and oriented nanofiber direct-written by mechano-electrospinning. Mater Manuf Process 27(12):1318–1323

    Article  Google Scholar 

  63. Min S-Y, Kim T-S, Kim BJ, Cho H, Noh Y-Y, Yang H, Cho JH, Lee T-W (2013) Large-scale organic nanowire lithography and electronics. Nat Commun 4:1773

    Article  Google Scholar 

  64. Ishii Y, Sakai H, Murata H (2011) Fabrication of a submicron-channel organic field-effect transistor using a controllable electrospun single fibre as a shadow mask. Nanotechnology 22(20):205202

    Article  Google Scholar 

  65. Takei K, Takahashi T, Ho JC, Ko H, Gillies AG, Leu PW, Fearing RS, Javey A (2010) Nanowire active-matrix circuitry for low-voltage macroscale artificial skin. Nat Mater 9(10):821–826

    Article  Google Scholar 

  66. Sekitani T, Noguchi Y, Hata K, Fukushima T, Aida T, Someya T (2008) A rubberlike stretchable active matrix using elastic conductors. Science 321(5895):1468–1472

    Article  Google Scholar 

  67. Xia YN, Yang PD, Sun YG, Wu YY, Mayers B, Gates B, Yin YD, Kim F, Yan YQ (2003) One-dimensional nanostructures: synthesis, characterization, and applications. Adv Mater 15(5):353–389

    Article  Google Scholar 

  68. Persano L, Dagdeviren C, Su YW, Zhang YH, Girardo S, Pisignano D, Huang YG, Rogers JA (2013) High performance piezoelectric devices based on aligned arrays of nanofibers of poly(vinylidenefluoride-co-trifluoroethylene). Nat Commun 4(3):1633

    Article  Google Scholar 

  69. Chang CE, Tran VH, Wang JB, Fuh YK, Lin LW (2010) Direct-write piezoelectric polymeric nanogenerator with high energy conversion efficiency. Nano Lett 10(2):726–731

    Article  Google Scholar 

  70. Ding Y, Duan Y, Huang Y (2015) Electrohydrodynamically printed, flexible energy harvester using in situ poled piezoelectric nanofibers. Energy Technol 3(4):351–358

    Article  Google Scholar 

  71. Huang Y, Ding Y, Bian J, Su Y, Zhou J, Duan Y, Yin Z (2017) Hyper-stretchable self-powered sensors based on electrohydrodynamically printed, self-similar piezoelectric nano/microfibers. Nano Energy 40:432–439

    Article  Google Scholar 

  72. Lee SW, Lee HJ, Choi JH, Koh WG, Myoung JM, Hur JH, Park JJ, Cho JH, Jeong U (2010) Periodic array of polyelectrolyte-gated organic transistors from electrospun poly(3-hexylthiophene) nanofibers. Nano Lett 10(1):347–351

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhouping Yin .

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Yin, Z., Huang, Y., Duan, Y., Zhang, H. (2018). Introduction of Electrohydrodynamic Printing. In: Electrohydrodynamic Direct-Writing for Flexible Electronic Manufacturing. Springer, Singapore. https://doi.org/10.1007/978-981-10-4759-6_1

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-4759-6_1

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-4758-9

  • Online ISBN: 978-981-10-4759-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics