Skip to main content

The Factor Demand Model and the Theory of Productivity

  • Chapter
  • First Online:
Book cover ICT Investment for Energy Use in the Industrial Sectors

Part of the book series: Lecture Notes in Energy ((LNEN,volume 59))

  • 281 Accesses

Abstract

This chapter outlines the background of the problem, along with presenting the relevant theories and existing researches related to the analysis of the productivity growth. The development of factor demand models is explained in detail based on the framework of the theory of firm’s optimal input decisions in a non-static context.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Bibliography

  • Aigner, D. J., Lovell, C. A. K., & Schmidt, P. (1977). Formulation and estimation of stochastic production function models. Journal of Econometrics, 6(1), 21–37.

    Article  MathSciNet  MATH  Google Scholar 

  • Ang, B. W., & Lee, S. Y. (1994). Decomposition of industrial energy-consumption—some methodological and application issues. Energy Economics, 16(2), 83–92. doi:10.1016/0140-9883(94)90001-9

    Article  Google Scholar 

  • Arnberg, S., & Bjorner, T. B. (2007). Substitution between energy, capital and labour within industrial companies: A micro panel data analysis. Resource and Energy Economics, 29(2), 122–136. doi:10.1016/j.reseneeco.2006.01.001

    Article  Google Scholar 

  • Apostolakis, B. E. (1990). Energy-capital substitutability/complementarity. Energy Economics, 12(1), 48–58. doi:10.1016/0140-9883(90)90007-3

    Article  Google Scholar 

  • Atkson, A., & Kehoe, P. J. (1995). Putty-clay capital and energy (Working Paper No. 548). Retrieved from The Federal Reserve Bank of Minneapolis website: http://www.minneapolisfed.org/research/WP/WP548.pdf

  • Balk, B. M. (2001). Scale efficiency and productivity change. Journal of Productivity Analysis, 15(3), 159–183. doi:10.1023/A:1011117324278

    Article  MathSciNet  Google Scholar 

  • Battese, G. E., & Coelli, T. J. (1995). A model for technical inefficiency effects in a stochastic frontier production function for panel data. Empirical Economics, 20(2), 325–332. doi:10.1007/bf01205442

    Article  Google Scholar 

  • Battese, G. E., Heshmati, A., & Hjalmarsson, L. (2000). Efficiency of labour use in the Swedish banking industry: a stochastic frontier approach. Empirical Economics, 25(4), 623–640. doi:10.1007/s001810000037

    Article  Google Scholar 

  • Berndt, E. R., & Morrison, C. J. (1981). Dynamic models of energy demand: An assessment and comparison. In E. R. Berndt & B. C. Field (Eds.), Modeling and measuring natural resource substitution: Revisions of papers originally presented at a conference held in Key Biscayne, Florida. Massachusetts. Cambridge: MIT Press.

    Google Scholar 

  • Berndt, E. R., Morrison, C. J., & Watkins, G. C. (1981). Dynamic models of energy demand: An assessment and comparision. In E. R. Berndt & B. C. Field (Eds.), Modeling and measuring national resource substitution. Cambridge, MA: MIT Press.

    Google Scholar 

  • Berndt, E. R., & Wood, D. O. (1975). Technology, prices, and the derived demand for energy. The Review of Economics and Statistics, 57(3), 259–268.

    Article  Google Scholar 

  • Berndt, E. R., & Wood, D. O. (1979). Engineering and econometric interpretations of energy-capital complementarity. American Economic Review, 69(3), 342–354.

    Google Scholar 

  • Bertola, G. (1998). Irreversible investment. Research in Economics, 52(1), 3–37.

    Article  MATH  Google Scholar 

  • Bhattacharyya, S. C., & Timilsina, G. R. (2009). Energy demand models for policy formulation: A comparative study of energy demand models (Policy Research Working Paper WPS4866). World Bank. Retrieved from http://econ.worldbank.org/external/default/main?pagePK=64165259&theSitePK=469372&piPK=64165421&menuPK=64166093&entityID=000158349_20090317093816

  • Chambers, R. G. (1983). Scale and productivity measurement under risk. American Economic Review, 73(4), 802–805. doi:10.2307/1816579

    Google Scholar 

  • Chang, C.-C., & Luh, Y.-H. (1999). Efficiency change and growth in productivity: The Asian growth experience. Journal of Asian Economics, 10(4), 551–570. doi:10.1016/s1049-0078(00)00032-4

    Article  Google Scholar 

  • Chen, P. C., Yu, M. M., Chang, C. C., & Hsu, S. H. (2008). Total factor productivity growth in China’s agricultural sector. China Economic Review, 19(4), 580–593. doi:10.1016/j.chieco.2008.07.001

    Article  Google Scholar 

  • Chichilnisky, G., & Heal, G. M. (1993). Energy-capital substitution: a general equilibrium analysis. In G. M. Heal (Ed.), Critical Writings in the Economics of Exhaustible Resources (pp. 339–390). London: Edward Elgar.

    Google Scholar 

  • Christensen, L. R., Jorgenson, D. W., & Lau, L. J. (1973). Transcendental logarithmic production frontiers. Review of Economics and Statistics, 55(1), 28–45. doi:10.2307/1927992

    Article  Google Scholar 

  • Christopoulos, D. K. (2000). The demand for energy in Greek manufacturing. Energy Economics, 22(5), 569–586. doi:10.1016/S0140-9883(99)00041-9

    Article  Google Scholar 

  • Collins, S. M., & Bosworth, B. P. (1996). Economic growth in East Asia: Accumulation versus assimilation. Brookings Papers on Economic Activity, 2(2), 135–203.

    Article  Google Scholar 

  • Conrad, K., & Unger, R. (1987). Ex post tests for short-and long-run optimization. Journal of Econometrics, 36(3), 339–358. doi:10.1016/0304-4076(87)90006-6

    Article  MathSciNet  MATH  Google Scholar 

  • Cook, P., & Uchida, Y. (2002). Productivity growth in east Asia: A reappraisal. Applied Economics, 34(10), 1195–1207. doi:10.1080/00036840110095778

    Article  Google Scholar 

  • Denny, M., May, J. D., & Pinto, C. (1978). The demand for energy in Canadian manufacturing: Prologue to an energy policy. The Canadian Journal of Economics, 11(2), 300. doi:10.2307/134350

    Article  Google Scholar 

  • Diewert, W. E. (1971). An application of the shephard duality theorem: A generalized leontief production function. Journal of Political Economy, 79(3), 481–507. doi:10.2307/1830768

    Article  Google Scholar 

  • Diewert, W. E. (1974). Functional forms for revenue and factor requirements functions. International Economic Review, 15(1), 119. doi:10.2307/2526093

    Article  MathSciNet  MATH  Google Scholar 

  • Diewert, W. E., & Wales, T. J. (1987). Flexible functional forms and global curvature conditions. Econometrica, 55(1), 43–68. doi:10.2307/1911156

    Article  MathSciNet  MATH  Google Scholar 

  • Dougherty, C. (2007). Introduction to econometrics. New York: USA: Oxford University Press.

    Google Scholar 

  • Eisner, R., Strotz, R. H., & Post, G. R. (1963). Determinants of business investment. Englewood Cliffs, NJ, USA: Prentice-Hall.

    Google Scholar 

  • Epstein, L. G. (1981). Duality-theory and functional forms for dynamic factor demands. Review of Economic Studies, 48(1), 81–95. doi:10.2307/2297122

    Article  MathSciNet  MATH  Google Scholar 

  • Färe, R., Grosskopf, S., & Lee, W. F. (1995). Productivity in Taiwanese manufacturing industries. Applied Economics, 27(3), 259–265. doi:10.1080/00036849500000109

    Article  Google Scholar 

  • Färe, R., Grosskopf, S., & Lee, W. F. (2001). Productivity and technical change: The case of Taiwan. Applied Economics, 33(15), 1911–1925. doi:10.1080/00036840010018711

    Article  Google Scholar 

  • Färe, R., Grosskopf, S., Norris, M., & Zhang, Z. (1994). Productivity growth, technical progress, and efficiency change in industrialized countries. The American Economic Review, 84(1), 66–83. doi:10.2307/2117971

    Google Scholar 

  • Field, B. C., & Grebenstein, C. (1980). Capital-energy substitution in U.S. manufacturing. The Review of Economics and Statistics, 62(2), 207. doi:10.2307/1924746

    Article  Google Scholar 

  • Filippini, M., & Hunt, L. C. (2011). Energy demand and energy efficiency in the OECD countries: A stochastic demand frontier approach. Energy Journal, 32(2), 59–80.

    Article  Google Scholar 

  • Freeman, C., & Soete, L. L. (1997). The economics of industrial innovation: Psychology Press.

    Google Scholar 

  • Frondel, M., & Schmidt, C. M. (2002). The capital-energy controversy: An artifact of cost shares? Energy, 23(3), 53–79.

    Google Scholar 

  • Galeotti, M. (1990). Specification of the technology for neoclassical investment theory—Esting the adjustment costs approach. Review of Economics and Statistics, 72(3), 471–480. doi:10.2307/2109355

    Article  Google Scholar 

  • Galeotti, M. (1996). The intertemporal dimension of neoclassical production theory. Journal of Economic Surveys, 10(4), 421–460. doi:10.1111/j.1467-6419.1996.tb00019.x

    Article  Google Scholar 

  • Griffin, J. M., & Gregory, P. R. (1976). An intercountry translog model of energy substitution responses. The American Economic Review, 66(5), 845–857. doi:10.2307/1827496

    Google Scholar 

  • Grossman, G. M., & Helpman, E. (1991). Innovation and growth in the global economy. Cambridge, MA: The MIT Press.

    Google Scholar 

  • Groth, C. (2005). Estimating UK capital adjustment costs (Working Paper 258). Bank of England. Structural Economic Analysis Division. Retrieved from http://www.bankofengland.co.uk/publications/Documents/workingpapers/wp258.pdf

  • Harper, C., & Field, B. C. (1983). Energy substitution in U.S. manufacturing: A regional approach. Southern Economic Journal, 50(2), 385. doi:10.2307/1058213

    Article  Google Scholar 

  • Hazilla, M., & Kopp, R. A. Y. M. O. N. D. (1983). Substitution Between Energy and Other Factors of Production: US Industrial Experience 1958–74. Final Report RP-1475, Electric Power Research Institute, Palo Alto, California

    Google Scholar 

  • Hsiao, F. S. T., & Park, C. (2005). Korean and Taiwanese productivity performance: Comparisons at matched manufacturing levels. Journal of Productivity Analysis, 23(1), 85–107. doi:10.1007/s11123-004-8549-x

    Article  Google Scholar 

  • Hudson, E. A., & Jorgenson, D. W. (1974). U.S. energy policy and economic growth, 1975–2000. The Bell Journal of Economics and Management Science, 5(2), 461. doi:10.2307/3003118

  • Hunt, L. C. (1984). Energy and capital—Substitutes or complements—Some results for the UK industrial sector. Applied Economics, 16(5), 783–789. doi:10.1080/00036848400000027

    Article  Google Scholar 

  • Iqbal, M. (1986). Substitution of labour, capital and energy in the manufacturing sector of Pakistan. Empirical Economics, 11(2), 81–95. doi:10.1007/bf01987506

    Article  Google Scholar 

  • Ishida, H. (2014). The effect of ICT development on economic growth and energy consumption in Japan. Telematics and Informatics, Forthcoming(0). doi:http://dx.doi.org/10.1016/j.tele.2014.04.003

  • Jondrow, J., Lovell, C. A. K., Materov, I. S., & Schmidt, P. (1982). On the estimation of technical inefficiency in the stochastic frontier production function model. Journal of Econometrics, 19(2–3), 233–238. doi:10.1016/0304-4076(82)90004-5

    Article  MathSciNet  Google Scholar 

  • Jones, C. T. (1995). A dynamic analysis of interfuel substitution in U.S. industrial energy demand. Journal of Business & Economic Statistics, 13(4), 459. doi:10.2307/1392391

    Article  Google Scholar 

  • Jorgenson, D. W. (1963). Capital theory and investment behaviour. American Economic Review, 35(2), 247–259.

    Google Scholar 

  • Just, R. E., & Pope, R. D. (1978). Stochastic specification of production functions and economic implications. Journal of Econometrics, 7(1), 67–86. doi:10.1016/0304-4076(78)90006-4

    Article  MathSciNet  MATH  Google Scholar 

  • Kander, A., & Schön, L. (2007). The energy-capital relation—Sweden 1870–2000. Structural Change and Economic Dynamics, 18(3), 291–305. doi:10.1016/j.strueco.2007.02.002

    Article  Google Scholar 

  • Kemfert, C., & Welsch, H. (2000). Energy-capital-labor substitution and the economic effects of CO2 abatement: Evidence for Germany. Journal of Policy Modeling, 22(6), 641–660. doi:10.1016/S0161-8938(98)00036-2

    Article  Google Scholar 

  • Khayyat, N. T. (2013). Exploring demand for energy in the South Korean industries (Doctoral dissertation), SMC University, Zurich, Switzerland. Retrieved from http://www.smcuniversity.com/item/exploring-demand-for-energy-in-the-south-korean-industries.html.

  • Kim, B. C., & Labys, W. C. (1988). Application of the translog model of energy substitution to developing-countries—The case of Korea. Energy Economics, 10(4), 313–323. doi:10.1016/0140-9883(88)90043-6

    Article  Google Scholar 

  • Kim, J., & Heo, E. (2013). Asymmetric substitutability between energy and capital: Evidence from the manufacturing sectors in 10 OECD countries. Energy Economics, 40, 81–89. doi:10.1016/j.eneco.2013.06.014

    Article  Google Scholar 

  • Kim, T., & Park, C. (2006). Productivity growth in Korea: Efficiency improvement or technical progress? Applied Economics, 38(8), 943–954. doi:10.1080/00036840600639006

    Article  Google Scholar 

  • Koetse, M. J., de Groot, H. L. F., & Florax, R. J. G. M. (2008). Capital-energy substitution and shifts in factor demand: A meta-analysis. Energy Economics, 30(5), 2236–2251. doi:10.1016/j.eneco.2007.06.006

    Article  Google Scholar 

  • Koschel, H. (2000). Substitution elasticities between capital, labour, material, electricity and fossil fuels in German producing and service sectors (Discussion Papers 00–31). Mannheim. Retrieved from http://www.zew.de/en/publikationen/publikation.php3?action=detail&nr=435.

  • Kruger, J. J., Canter, U., & Hanusch, H. (2000). Total factor productivity, the east asian miracle, and the world production frontier. Weltwirtschaftliches Archiv, 136(1), 111–136.

    Article  Google Scholar 

  • Krugman, P. (1994). The myth of Asia’s miracle. Foreign Affairs, 73(1), 62–78.

    Article  Google Scholar 

  • Kulatilaka, N. (1985). Capital budgeting and optimal timing of investments in flexible manufacturing systems. Annals of Operations Research, 3(2), 35–57. doi:10.1007/BF02022058

    Article  MathSciNet  Google Scholar 

  • Kumbhakar, S. C., Hjalmarsson, L., & Heshmati, A. (2002). How fast do banks adjust? A dynamic model of labour-use with an application to Swedish banks. Journal of Productivity Analysis, 18(1), 79–102.

    Article  Google Scholar 

  • Kumbhakar, S. C., & Lovell, C. A. K. (2000). Stochastic frontier analysis. Cambridge: U. K.

    Book  MATH  Google Scholar 

  • Lau, L. J. (1986). Functional forms in econometric model building. In G. Zvi & D. I. Michael (Eds.), Handbook of Econometrics (Vol. 3, pp. 1515–1566): Elsevier.

    Google Scholar 

  • Lee, J.-D., Kim, T.-Y., & Heo, E. (1998). Technological progress versus efficiency gain in manufacturing sectors. Review of Development Economics, 2(3), 268–281. doi:10.1111/1467-9361.00041

    Article  Google Scholar 

  • Lucas, R. E., (1967). Adjustment costs and the theory of supply. The Journal of Political Economy, 75(4), 321–334.

    Google Scholar 

  • Lucas, R. E., Jr. (1988). On the mechanics of economic development. Journal of Monetary Economics, 22(1), 3–42. doi:10.1016/0304-3932(88)90168-7

    Article  Google Scholar 

  • Ma, H., Oxley, L., Gibson, J., & Kim, B. (2008). China’s energy economy: Technical change, factor demand and interfactor/interfuel substitution. Energy Economics, 30(5), 2167–2183.

    Article  Google Scholar 

  • Magnus, J. R. (1979). Substitution between energy and nonenergy inputs in the Netherlands. International Economic Review 465483, 20(2 SRC–Google Scholar), 1950–1976.

    Google Scholar 

  • Mahmud, S. F. (2000). The energy demand in the manufacturing sector of Pakistan: some further results. Energy Economics, 22(6), 641–648. doi:10.1016/S0140-9883(99)00031-6

    Article  Google Scholar 

  • Masso, J., & Heshmati, A. (2004). The optimality and overuse of labour in Estonian manufacturing enterprises. Economics of Transition, 12(4), 683–720. doi:10.1111/j.0967-0750.2004.00199.x

    Article  Google Scholar 

  • McFadden, D. (1978). Modelling the choice of residential location. California: Institute of Transportation Studies, University of California.

    Google Scholar 

  • McNown, R. F., Pourgerami, A., & Hirschhausen, C. R. (1991). Input substitution in manufacturing for three LDCs: Translog estimates and policy implications. Applied Economics, 23(1), 209–218.

    Article  Google Scholar 

  • Morana, C. (2007). Factor demand modelling: The theory and the practice. Applied Mathematical Sciences, 1(31), 1519–1549.

    MathSciNet  MATH  Google Scholar 

  • Morrison, C. J. (1988). Quasi-fixed inputs in US and Japanese manufacturing A generalized Leontief restricted cost function approach. The Review of Economics and Statistics, 70(2), 275–287.

    Article  Google Scholar 

  • Mun, S. B. (2002, August, 30, 2013). Computer adjustment costs: Is quality improvement important? Retrieved from http://homepages.nyu.edu/~sbm210/research/itjq.pdf.

  • Nadiri, M. I., & Prucha, I. R. (1986). A comparison of alternative methods for the estimation of dynamic factor demand models under non-static expectations. Journal of Econometrics, 33(1), 187–211.

    Google Scholar 

  • Nadiri, M. I., & Prucha, I. R. (1999). Dynamic factor demand models and productivity analysis (NBER Working Paper 7079). National Bureau of Economic Research Working Paper Series. Retrieved from http://www.nber.org/papers/w7079.pdf.

  • Nadiri, M. I., & Rosen, S. (1969). Interrelated factor demand functions. The American Economic Review, 59(4), 457–471.

    Google Scholar 

  • Nelson, R. R., & Pack, H. (1999). The Asian miracle and modern growth theory. The Economic Journal, 109(457), 416–436. doi:10.1111/1468-0297.00455

    Article  Google Scholar 

  • Ozatalay, S., Grubaugh, S., & Long, T. V. (1979). Energy substitution and national energy-policy. American Economic Review, 69(2), 369–371.

    Google Scholar 

  • Pindyck, R. S. (1979). Interfuel substitution and the industrial demand for energy: An international comparison. The Review of Economics and Statistics, 61(2), 169–179.

    Article  Google Scholar 

  • Pindyck, R. S., & Rotemberg, J. J. (1983). Dynamic factor demands and the effects of energy price shocks. American Economic Review, 73(5), 1066–1079.

    Google Scholar 

  • Rouvinen, P. (1999). R&D spillovers among Finnish manufacturing firms: A cost function estimation with random coeficients. Discussion Papers no. 686. The Research Institute of the Finnish Economy.

    Google Scholar 

  • Sahu, S. K., & Narayanan, K. (2011). Total factor productivity and energy intensity in Indian manufacturing : A cross-sectional study. International Journal of Energy Economics and Policy, 1(2) (SRC-GoogleScholar), 47–58.

    Google Scholar 

  • Saicheua, S. (1987). Input substitution in Thailand’s manufacturing sector: Implications for energy policy. Energy Economics, 9(1), 55–63.

    Article  Google Scholar 

  • Schankerman, M., & Nadiri, M. I. (1982). Investment in R&D, costs of adjustment and expectations. National Bureau of Economic Research Working Paper Series no 931.

    Google Scholar 

  • Shephard, R. W. (1953). Cost and production functions. Princeton: USA: Princeton University Press.

    Google Scholar 

  • Siddayao, C. M., Khaled, M., Ranada, J. G., & Saicheua, S. (1987). Estimates of energy and non-energy elasticities in selected Asian manufacturing sectors: Policy implications. Energy Economics, 9(2), 115–128.

    Article  Google Scholar 

  • Stiglitz, J. E. (1996). Some lessons from the east asian miracle. The World Bank Research Observer, 11(2), 151–177. doi:10.2307/3986429

    Article  Google Scholar 

  • Stern, D. I. (2011). The role of energy in economic growth. Annals of the New York Academy of Sciences, 1219(1), 26–51.

    Google Scholar 

  • Suzuki, K., & Takenaka, H. (1981). The role of investment for energy conservation: Future Japanese economic growth. Energy Economics, 3(4), 233–243. doi:10.1016/0140-9883(81)90024-4

    Article  Google Scholar 

  • Taskin, F., & Zaim, O. (1997). Catching-up and innovation in high- and low-income countries. Economics Letters, 54(1), 93–100. doi:10.1016/S0165-1765(97)00004-9

    Article  MATH  Google Scholar 

  • Thompson, H. (2006). The applied theory of energy substitution in production. Energy Economics, 28(4), 410–425. doi:10.1016/j.eneco.2005.01.005

    Article  Google Scholar 

  • Turnovsky, M. H. L., Folie, M., & Ulph, A. (1982). Factor substitutability in Australian manufacturing with emphasis on energy inputs. Economic Record, 58(160), 61–72. doi:10.1111/j.1475-4932.1982.tb00349.x

    Article  Google Scholar 

  • Urga, G., & Walters, C. (2003). Dynamic translog and linear logit models: A factor demand analysis of interfuel substitution in US industrial energy demand. Energy Economics, 25(1), 1–21. doi:10.1016/S0140-9883(02)00022-1

    Article  Google Scholar 

  • Varian, H. R. (1992). Macroeconomic analysis (3rd ed.). New York, USA: W.W. Norton & Company, Inc.

    Google Scholar 

  • Vencappa, D., Fenn, P., Diacon, S., & Campus, J. (2008, July, 3, 2013). Parametric decomposition of total factor productivity growth in the European Insurance Industry: evidence from life and non-life companies (Working Paper).Nottingham University. Retrieved from http://scholar.googleusercontent.com/scholar?q=cache:cudL8xyk8vkJ:scholar.google.com/+Parametric+Decomposition+of+Total+Factor+Productivity+Growth+in+the+European+Insurance+Industry:+Evidence+from+Life+and+Non-Life+Companies&hl=en&as_sdt=0,5.

  • Watanabe, C. (1992). Trends in the substitution of production factors to technology - empirical-analysis of the inducing impact of the energy-crisis on Japanese industrial-technology. Research Policy, 21(6), 481–505. doi:10.1016/0048-7333(92)90006-P

    Article  Google Scholar 

  • Yi, F. (2000). Dynamic energy-demand models: A comparison. Energy Economics, 22(2), 285–297. doi:10.1016/S0140-9883(99)00042-0

    Article  MathSciNet  Google Scholar 

  • Yuhn, K. H. (1991). Economic growth, technical change biases, and the elasticity of substitution: A test of the De La Grandville hypothesis. The Review of Economics and Statistics, 73(2), 340–346.

    Article  Google Scholar 

  • Zhou, P., Ang, B. W., & Zhou, D. Q. (2012). Measuring economy-wide energy efficiency performance: A parametric frontier approach. Applied Energy, 90(1), 196–200. doi:10.1016/j.apenergy.2011.02.025

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nabaz T. Khayyat .

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd.

About this chapter

Cite this chapter

Khayyat, N.T. (2017). The Factor Demand Model and the Theory of Productivity. In: ICT Investment for Energy Use in the Industrial Sectors. Lecture Notes in Energy, vol 59. Springer, Singapore. https://doi.org/10.1007/978-981-10-4756-5_4

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-4756-5_4

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-4755-8

  • Online ISBN: 978-981-10-4756-5

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics