Skip to main content

Introduction

  • Chapter
  • First Online:
Electronic States in Crystals of Finite Size

Part of the book series: Springer Tracts in Modern Physics ((STMP,volume 270))

  • 817 Accesses

Abstract

The theory of electronic states in crystals is the very basis of modern solid-state physics. In conventional solid-state physics, the theory of electronic states is essentially a theory of electronic states in crystals of infinite size where all electronic states are progressive Bloch waves. A fundamental difficulty of such theory is that any real crystal always has a finite size, and the electronic states in a simple crystal of finite size have not been well understood. The theory of electronic states in conventional solid-state physics cannot treat the boundary effects and the size effects of the finite crystals. The effective mass approximation (EMA) previously used in treating finite crystals is based on the understandings of quantum confinement of plane waves. Some numerical results clearly indicated that EMA might be qualitatively incorrect: The quantum confinement of Bloch waves might be fundamentally different from the quantum confinement of plane waves. The chapter is concluded with a brief introduction to the subject and main findings of the book.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    By including the relativistic effect, (1.13) can be further extended to

    $$\begin{aligned} E^2_j = m^2 c^4 + j^2 \hbar ^2 c^2 \left( \frac{\pi }{L} \right) ^2, \end{aligned}$$

    where c is the speed of light [28].

  2. 2.

    In this book, a position vector is usually written as \({\mathbf {x}}= x_1 {\mathbf {a}}_1 + x_2 {\mathbf {a}}_2 + x_3 {\mathbf {a}}_3\). For quantum films, it is usually assumed that \({\mathbf {a}}_3\) is the only primitive lattice vector out of the film plane.

  3. 3.

    The edge-like states were named side-like states in the first edition.

  4. 4.

    The vertex-like states were named corner-like states in the first edition.

References

  1. F. Bloch, Zeit. Phys. 52, 555 (1928)

    Article  ADS  Google Scholar 

  2. F. Seitz, The Modern Theory of Solids (McGraw-Hill, New York, 1940)

    MATH  Google Scholar 

  3. H. Jones, The Theory of Brillouin Zones and Electronic States in Crystals (North-Holland, Amsterdam, 1960)

    MATH  Google Scholar 

  4. W.A. Harrison, Solid State Theory (McGraw-Hill, New York, 1970)

    Google Scholar 

  5. N.W. Ashcroft, N.D. Mermin, Solid State Physics (Holt, Rinehart and Winston, New York, 1976)

    MATH  Google Scholar 

  6. J. Callaway, Quantum Theory of the Solid State, 2nd edn. (Academic Press, London, 1991)

    Google Scholar 

  7. C. Kittel, Introduction to Solid State Physics, 7th edn. (Wiley, New York, 1996)

    MATH  Google Scholar 

  8. L. Brillouin, J. Phys. Radium 1, 377 (1930)

    Article  Google Scholar 

  9. H.A. Kramers, Physica 2, 483 (1935)

    Article  ADS  Google Scholar 

  10. J.R. Chelikowsky, M.L. Cohen, Electronic Structure and Optical Properties of Semiconductors, 2nd edn. (Springer, Berlin, 1989)

    Google Scholar 

  11. J.R. Chelikowsky, M.L. Cohen, Phys. Rev. B14, 556 (1976)

    Article  ADS  Google Scholar 

  12. I. Tamm, Phys. Z. Sowj. 1, 733 (1932)

    Google Scholar 

  13. R.L. Kronig, W.G. Penney, Proc. R. Soc. Lond. Ser. A130, 499 (1931)

    Google Scholar 

  14. S.G. Davison, M. Stȩślicka, Basic Theory of Surface States (Clarendon Press, Oxford, 1992)

    Google Scholar 

  15. M.-C. Desjonquéres, D. Spanjaard, Concepts in Surface Physics (Springer, Berlin, 1993)

    Book  Google Scholar 

  16. M. Nirmal, L. Brus, Acc. Chem. Res. 32, 417 (1999); S. Ossicini, L. Pavesi, F. Priolo, Light Emitting Silicon for Microphotonics (Springer, Berlin, 2003) (and the references therein)

    Google Scholar 

  17. A. Franceschetti, A. Zunger, Phys. Rev. B52, 14664 (1995); A. Franceschetti, A. Zunger. J. Chem. Phys. 104, 5572 (1996)

    Google Scholar 

  18. A.D. Yoffe, Adv. Phys. 42, 173 (1993); A.D. Yoffe, Adv. Phys. 50, 1 (2001); A.D. Yoffe, Adv. Phys. 51, 799 (2002). (and references therein)

    Google Scholar 

  19. J.H. Davies, The Physics of Low Dimensional Semiconductors (Cambridge University Press, Cambridge, 1998). (and references therein)

    Google Scholar 

  20. P. Harrison, Quantum Wells, Wires and Dots: Theoretical and Computational Physics (Wiley, New York, 2000). (and references therein)

    Google Scholar 

  21. J.B. Xia, Phys. Rev. B40, 8500 (1989); T. Takagahara, K. Takeda, Phys. Rev. B46, 15578 (1992); T. Takagahara, Phys. Rev. B47, 4569 (1993); Al.L. Efros, M. Rosen, M. Kuno, M. Nirmal, D. J. Norris, M. Bawendi, Phys. Rev. B54, 4843 (1996); Al.L. Efros, M. Rosen, Ann. Rev. Mater. Sci. 30, 475 (2000); A.V. Rodina, Al.L. Efros, A.Yu. Alekseev, Phys. Rev. B67, 155312 (2003); D.H. Feng, Z.Z. Xu, T.Q. Jia, X.X. Li, S.Q. Gong. Phys. Rev. B68, 035334 (2003)

    Google Scholar 

  22. A. Di Carlo, Semicond. Sci. Technol. 18, R1 (2003). (and references therein)

    Article  Google Scholar 

  23. P.E. Lippens, M. Lannoo, Phys. Rev. B39, 10935 (1989); S.Y. Ren, J.D. Dow, Phys. Rev. B45, 6492 (1992); G.D. Sanders, Y.C. Chang, Phys. Rev. B45, 9202 (1992); G. Allan, C. Delurue, M. Lannoo, Phys. Rev. Lett. 76, 2961 (1996); S.Y. Ren, Phys. Rev. B55, 4665 (1997); S.Y. Ren, Solid State Commun. 102, 479 (1997); Y.M. Niquet, G. Allan, C. Delurue, M. Lannoo, Appl. Phys. Lett. 77, 1182 (2000); Y.M. Niquet, C. Delurue, G. Allan, M. Lannoo, Phys. Rev. B62, 5109 (2000); J. Sée, P. Dollfus, S. Galdin, Phys. Rev. B66, 193307 (2002); S. Sapra, D.D. Sarma, Phys. Rev. B69, 125304 (2004); P. Chen, K.B. Whaley, Phys. Rev. B70, 045311 (2004); G. Allan, C. Delurue. Phys. Rev. B70, 245321 (2004)

    Google Scholar 

  24. L.W. Wang, A. Zunger, J. Chem. Phys. 100, 2394 (1994); L.W. Wang, A. Zunger, J. Phys. Chem. 98, 2158 (1994); L.W. Wang, A. Zunger, Phys. Rev. Lett. 73, 1039 (1994); C.Y. Yeh, S.B. Zhang, A. Zunger, Phys. Rev. B50, 14405 (1994); A. Tomasulo, M.V. Ramakrishna, J. Chem. Phys. 105, 3612 (1996); L.W. Wang, A. Zunger, Phys. Rev. B53, 9579 (1996); H.X. Fu, A. Zunger, Phys. Rev. B55, 1642 (1997); H.X. Fu, A. Zunger, Phys. Rev. B56, 1496 (1997); L.W. Wang, J.N. Kim, A. Zunger, Phys. Rev. B59, 5678 (1999); F.A. Reboredo, A. Franceschetti, A. Zunger, Appl. Phys. Lett. 75, 2972 (1999); A. Franceschetti, H.X. Fu, L.W. Wang, A. Zunger, Phys. Rev. B60, 1919 (1999)

    Google Scholar 

  25. B. Delley, E.F. Steigmeier, Appl. Phys. Lett. 67, 2370 (1995); S. Ogut, J.R. Chelikowsky, S.G. Louie, Phys. Rev. Lett. 79, 1770 (1997); C.S. Garoufalis, A.D. Zdetsis, S. Grimme, Phys. Rev. Lett. 87, 276402 (2001); H.-Ch. Weissker, J. Furthm\(\ddot{\rm {u}}\)ller, F. Bechstedt, Phys. Rev. B67, 245304 (2003); A.S. Barnard, S.P. Russo, I.K. Snook, Phys. Rev. B68, 235407 (2003); X. Zhao, C.M. Wei, L. Yang, M.Y. Chou, Phys. Rev. Lett. 92, 236805 (2004); R. Rurali, N. Lorenti, Phys. Rev. Lett. 94, 026805 (2005); G. Nesher, L. Kronik, J.R. Chelikowsky. Phys. Rev. B71, 035344 (2005)

    Google Scholar 

  26. J.M. Luttinger, W. Kohn, Phys. Rev. 97, 869 (1957); W. Kohn, Solid State Physics, vol. 5, ed. by F. Seitz, D. Turnbull (Academic Press, New York, 1955), pp. 257–320

    Google Scholar 

  27. L.I. Schiff, Quantum Mechanics, 3rd edn. (McGraw-Hill, New York, 1968)

    MATH  Google Scholar 

  28. S.Y. Ren, Chin. Phys. Lett. 19, 617 (2002)

    Article  ADS  Google Scholar 

  29. Al.L. Efros, A.L. Efros, Sov. Phys. Semicond. 16, 772 (1982); L.E. Brus, J. Phys. Chem. 80, 4403 (1984); Y. Wang, N. Herron, J. Phys. Chem. 95, 525 (1991)

    Google Scholar 

  30. M.J. Kelly, Low-Dimensional Semiconductors: Materials, Physics, Technology, Devices, 3rd ed. (Oxford University Press, Oxford, 1995); B.K. Ridley, Electrons and Phonons in Semiconductor Multilayers, 3rd ed. (Cambridge University Press, Cambridge, 1997); L. Bányai, S.W. Koch, Semiconductor Quantum Dots (World Scientific, Singapore, 1993); C. Delerue, M. Lannoo, Nanostructures: Theory and Modeling (Springer, Berlin, 2004); S. Glutch, Excitons in Low-Dimensional Semiconductors: Theory, Numerical Methods, Applications (Springer, Berlin, 2004)

    Google Scholar 

  31. M.G. Burt, J. Phys. Condens. Matter 4, 6651 (1992). (and references therein)

    Article  ADS  Google Scholar 

  32. S.B. Zhang, A. Zunger, Appl. Phys. Lett. 63, 1399 (1993)

    Article  ADS  Google Scholar 

  33. S.B. Zhang, C.-Y. Yeh, A. Zunger, Phys. Rev. B48, 11204 (1993)

    Article  ADS  Google Scholar 

  34. A. Franceschetti, A. Zunger, Appl. Phys. Lett. 68, 3455 (1996)

    Article  ADS  Google Scholar 

  35. Z.V. Popovic, M. Cardona, E. Richter, D. Strauch, L. Tapfer, K. Ploog, Phys. Rev. B40, 1207 (1989); Z.V. Popovic, M. Cardona, E. Richter, D. Strauch, L. Tapfer, K. Ploog, Phys. Rev. B40, 3040 (1989); Z.V. Popovic, M. Cardona, E. Richter, D. Strauch, L. Tapfer, K. Ploog. Phys. Rev. B41, 5904 (1990)

    Google Scholar 

  36. F.B. Pedersen, P.C. Hemmer, Phys. Rev. B50, 7724 (1994)

    Article  ADS  Google Scholar 

  37. T.M. Kalotas, A.R. Lee, Eur. J. Phys. 16, 119 (1995)

    Article  Google Scholar 

  38. D.W.L. Sprung, J.D. Sigetich, H. Wu, J. Martorell, Am. J. Phys. 68, 715 (2000)

    Article  ADS  Google Scholar 

  39. P.W. Anderson, Rev. Mod. Phys. 50, 191 (1978)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shang Yuan Ren .

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd.

About this chapter

Cite this chapter

Ren, S.Y. (2017). Introduction. In: Electronic States in Crystals of Finite Size. Springer Tracts in Modern Physics, vol 270. Springer, Singapore. https://doi.org/10.1007/978-981-10-4718-3_1

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-4718-3_1

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-4716-9

  • Online ISBN: 978-981-10-4718-3

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics