Skip to main content

Adaptive Mechanisms of Sheep to Climate Change

  • Chapter
  • First Online:
Sheep Production Adapting to Climate Change

Abstract

Sheep rearing is the most integral part of animal production particularly in tropical regions. Climate change is observed to have devastating effects on sheep farming through constraints such as heat stress, lower grazing lands, water scarcity and higher pest and disease incidences. These environmental constraints may lead to compromised productive functions in sheep. The cumulative effects of heat, nutritional and walking stress occurring in the hotter parts of the year compromise the productive and reproductive performances of the sheep through reduced feed intake, modified endocrine profile, lower rumination and nutrient absorption and higher maintenance demands.

Indigenous sheep breeds particularly in the tropical region are found to have better adaptability to hot climates than exotic and crossbreds. Sheep try to cope with these adverse environmental stressors through morphological, behavioural, endocrine, blood biochemical and cellular adaptations. Sheep indigenous to tropical and subtropical regions are observed to have carpet-type wool which helps them in eliciting cutaneous evaporative cooling mechanism to dissipate extra heat load during summer. Exposure to higher ambient temperature triggers all behavioural and physiological mechanisms in sheep to cope with the existing condition. Similarly, their endocrine mechanisms also play a major role in their adaptive processes. Cortisol being the primary stress-relieving hormone initiates various physiological modifications in these sheep to adapt to the adverse thermal conditions. Further, heat stress-induced hyperthermia also decreased thyroid gland activity and thyroid hormone levels in the blood to control metabolic heat production. Higher expenditure of energy along with lower feed accessibility altered blood biochemical parameters such as glucose, protein, cholesterol, globulin and albumin in sheep. The activation of cellular and molecular mechanisms is considered to be the most important responses by which the animals survive the heat stress condition. The activation of these pathways may help to identify various thermotolerant genes to quantify heat stress condition in sheep. It has also been found that respiration rate, rectal temperature, plasma cortisol, thyroxin, triiodothyronine and heat shock protein 70 are established to be the ideal biological makers for environmental stress in sheep.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdelatif AM, Ahmed MMM (1994) Water restriction, thermoregulation, blood constituents and endocrine responses in Sudanese desert sheep. J Arid Environ 26:171–180

    Article  Google Scholar 

  • Abdel-Hafez MAM (2002) Studies on the reproductive performance in sheep. PhD thesis, Faculty of Agriculture, Zagazig University, Zagazig, Egypt

    Google Scholar 

  • Abouheif MA, Alsobyal AA (1983) Environmental and genetic factors influencing birth weight of black Najdi lambs. World Rev Animal Prod 19:51

    Google Scholar 

  • Aganga AA, Umunna NN, Oyedipe EO, Okoh PN (1989) Influence of water restriction on some serum components in Yankasa ewes. Small Rumin Res 2:19–26

    Article  Google Scholar 

  • Aharoni YA, Brosh AP, Kourilov AA (2003) The variability of the ratio of oxygen consumption to heart rate in cattle and sheep at different hours of the day and under different heat load conditions. Livest Prod Sci 79:107–117

    Article  Google Scholar 

  • Atti N, Bocquier F, Khaldi G (2004) Performance of the fat-tailed Barbarine sheep in its environment: adaptive capacity to alternation of underfeeding and refeeding periods- a review. Anim Res 53:165–176

    Article  Google Scholar 

  • Barbour E, Rawda N, Banat G, Jaber L, Sleiman FT, Hamadeh S (2005) Comparison of immunosuppression in dry and lactating Awassi ewes due to water deprivation stress. Vet Res Commun 29:47–60

    Article  CAS  PubMed  Google Scholar 

  • Barkai S, Landau A, Brosh (2002) Estimation of energy intake from heart rate and energy expenditure in sheep under confinement or grazing condition. Livest Prod Sci 73:237–246

    Article  Google Scholar 

  • Barnes A, Beatty D, Taylor ES, Maloney CS, McCarthy M (2004) Physiology of heat stress in cattle and sheep. The efficacy of electrolyte replacement therapy. LIVE.209 Final Report. Meat and Livestock Australia Ltd. ISBN 1 74036 524

    Google Scholar 

  • Bauman DE, Currie WB (1980) Partitioning of nutrients during pregnancy and lactation: a review of mechanisms involving homeostasis and homeorrhesis. J Dairy Sci 63:1514–1529

    Article  CAS  PubMed  Google Scholar 

  • Baumgard LH, Rhoads RP (2007) The effects of hyperthermia on nutrient partitioning. Proc Cornell Nutr Conf, Ithaca, pp 93–104

    Google Scholar 

  • Ben Gara A (2000) De’finition des objectifs de se’lection des ovins de race Barbarine en Tunisie. Options Me’diterrane’ennes A 43: 111–116

    Google Scholar 

  • Ben Salem H, Smith T (2008) Feeding strategies to increase small ruminant production in dry environments. Small Rumin Res 77:174–194

    Article  Google Scholar 

  • Bernabucci U, Lacetera N, Basiricò L, Ronchi B, Morera P, Seren E, Nardone A (2006) Hot season and BCS affect leptin secretion of periparturient dairy cows. J Dairy Sci 89(1):348–349

    Google Scholar 

  • Bertipaglia ECA, da Silva RG, Cardoso V, Fries LA (2007) Hair coat characteristics and sweating rate of Braford cows in Brazil. Livest Sci 112:98–108

    Article  Google Scholar 

  • Bhattacharya AN, Uwayjan M (1975) Effect of high ambient temperature and low humidity on nutrient utilization and some physiological responses in Awassi sheep fed different level of roughage. J Anim Sci 5:320–328

    Article  Google Scholar 

  • Bianca W (1968) Thermoregulation. In: Hafez ESE (ed) Adaptation of domestic animals. Philadelphia, Lea and Febiger, pp 97–118

    Google Scholar 

  • Blackburn H, Mezzadra C (2006) Policies for the management of animal genetic resources. In: World Congress on Genetics Applied to Livestock Production 7 Proceedings… www.wcgalp8.org.br/wcgalp8/articles

    Google Scholar 

  • Blaxter KL, McC Graham N, Wainman FW (1959) Environmental temperature, energy metabolism and heat regulation in sheep. III. The metabolism and thermal exchanges of sheep with fleeces. J Agric Sci 52(1):41–49

    Article  Google Scholar 

  • Bligh JA (1985) Temperature regulation. In: Yousef MK (ed) Stress physiology in livestock. Volume 1: Basic principles. CRC Press, Florida, pp 75–97

    Google Scholar 

  • Bouchama A, Roberts G, Al Mohanna F, El-Sayed R, Lach B, Chollet-Martin S, Ollivier V, Al Baradei R, Loualich A, Nakeeb S, Eldali A, de Prost D (2005) Inflammatory, hemostatic, and clinical changes in a baboon experimental model for heatstroke. J Appl Physiol 98:697–705

    Article  CAS  PubMed  Google Scholar 

  • Brook AH, Short BF (1960) Sweating in sheep. Aust J Agric Res 11(4):557–569

    Article  Google Scholar 

  • Brown-Brandl TM, Eigenberg RA, Hahn GL, Nienaber JA, Mader TL, Spiers DE, Parkhurst AM (2005) Analyses of thermoregulatory responses of feeder cattle exposed to simulated heat waves. Int J Biometeorol 49(5):285–296

    Article  CAS  PubMed  Google Scholar 

  • Brown-Brandl TM, Eigenberg RA, Nienaber JA (2006) Heat stress risk factors of feedlot heifers. Livest Sci 105:57–68

    Article  Google Scholar 

  • Cabanac M (1975) Temperature regulation. Annu Rev Physiol 37:415–439

    Article  CAS  PubMed  Google Scholar 

  • Cain JW, Krausman P, Rosenstock SS, Turner J (2005) Literature review and annotated bibliography: water requirements of desert ungulates. Southwest Biological Science Center, Flagstaff, p 111

    Google Scholar 

  • Cain JW, Krausman P, Rosenstock SS, Turner J (2006) Mechanisms of thermoregulation and water balance in desert ungulates. Wildl Soc Bull 34:570–581

    Article  Google Scholar 

  • Cain JW, Jansen BD, Wilson RR (2008) Potential thermoregulatory advantages of shade use by desert bighorn sheep. J Arid Environ 72:1518–1525

    Article  Google Scholar 

  • Chilliard Y, Ferlay A, Faulconnier Y, Bonnet M, Rouel J, Bocquier F (2000) Adipose tissue metabolism and its role in adaptations to undernutrition in ruminants. Proc Nutr Soc 59:127–134

    Article  CAS  PubMed  Google Scholar 

  • Christison GI, Johnson HD (1972) Cortisol turnover in heat stressed cows. J Anim Sci 53:1005–1010

    Article  Google Scholar 

  • Christopherson RJ (1985) The thermal environment and the ruminant digestive system. In: Yousef MK (ed) Stress physiology in livestock, vol 1. CRC Press, Boca Raton

    Google Scholar 

  • Collier RJ, Baumgard LH, Lock AL, Bauman DE (2005) Chapter 16: Physiological limitations: nutrient partitioning. In: Wiseman J, Bradley R (eds) Yields of farmed species: constraints and opportunities in the 21st century. Proceedings: 61st Easter School, Nottingham, England. Nottingham University Press, Nottingham, pp 351–377

    Google Scholar 

  • Collier RJ, Collier JL, Rhoads RP, Baumgard LH (2008) Gene involved in the bovine heat stress response. J Dairy Sci 91:445–454

    Article  CAS  PubMed  Google Scholar 

  • Degen AA (1977) Fat-tailed Awassi and German Mutton Merino sheep under semi-arid conditions III: body temperature and panting rate. J Agric Sci 89:399–405

    Article  Google Scholar 

  • Degen AA, Shkolnik A (1978) Thermoregulation in fat-tailed Awassi, a desert sheep, and in German Mutton Merino, a mesic sheep. Physiol Zool 51:333–339

    Article  Google Scholar 

  • Di Giacomo K (2011) The physiological and metabolic responses to heat in ruminants. PhD thesis, Melbourne School of Land and Environment – Agriculture and Food Systems, The University of Melbourne

    Google Scholar 

  • Dwyer CM (2008) Environment and the sheep: breed adaptations and welfare implications. In: Dwyer CM (ed) The welfare of sheep. Springer, Berlin, pp 41–79

    Google Scholar 

  • Dyce WM, Sack WO, Wensing CJC (1996) eTratado de anatomia veterinária, 2nd edn. Guanabara Koogan, Rio de Janeiro, p 663

    Google Scholar 

  • El-Nouty FD, Al-Haidary AA, Salah MS (1990) Seasonal variations in hematological valoes of high-and average-yielding holstein cattle in semi-arid environment. J King Saud Univ Agric Sci 2:173–182

    Google Scholar 

  • Eltawil EA, Narendran R (1990) Ewe productivity in four breeds of sheep in Saudi Arabia. World Rev Animal Prod 25:93–96

    Google Scholar 

  • Epstein H (1985) The Awassi sheep with special reference to the improved dairy type. FAO Animal Health Paper 57:34–38

    Google Scholar 

  • Eyal E (1963) Shorn and unshorn Awassi sheep- body temperature. J Agric Sci 60:159–176

    Article  Google Scholar 

  • FAO (2007) Global plan of action for animal genetic resources and the Interlaken Declaration. Int. technical conf. on animal genetic resources for food and agriculture, Interlaken, Switzerland, 3–7 September 2007, FAO, Rome, Italy

    Google Scholar 

  • Fischer G, Shah M, Francesco N, Van Velhuizen H (2005) Socio-economic and climate change impacts on agriculture: an integrated assessment, 1990-2080. Philos Trans R Soc B 360:2067–2083

    Article  Google Scholar 

  • Flanagan SW, Ryan AJ, Gisolfi CV, Moseley PL (1995) Tissue-specific HSP70 response in animals undergoing heat stress. Am J Phys 268:28–32

    Google Scholar 

  • Fukuhara KT, Sawai, Yamamoto S (1983) The relationship between heart rate and heat production of dairy cow

    Google Scholar 

  • Gaughan JB, Goopy J, Sparke J (2002) Excessive heat load index for feedlot cattle. In meat and Livestock Australia Project Report, FLOT 316. MLA ltd, NSW, Sydney

    Google Scholar 

  • Gaughan JB, Davis MS, Mader TL (2004) Wetting and the physiological responses of grain-fed cattle in a heated environment. Crop Pasture Sci 55(3):253–260

    Article  Google Scholar 

  • Gebremedhin KG (1985) Heat exchange between livestock and the environment. In: Yousef MK (ed) Stress physiology in livestock. CRC Press, Boca Raton, pp 15–33

    Google Scholar 

  • Gebremedhin KG, Ni H, Hillman PE (1997) Temperature profile and heat flux through irradiated fur layer. In: International livestock environment symposium, St. Joseph. Proceedings, St. Joseph, pp 226–233

    Google Scholar 

  • Ghanem AM, Barbour EK, Hamadeh SK, Jaber LS, Abi Said M (2008) Physiological and chemical responses in water-deprived Awassi ewes treated with vitamin C. J Arid Environ 72:141–149

    Article  Google Scholar 

  • Goodall AM (1955) Arterio-venous anastomoses in the skin of the head and ears of the calf. J Anat 89(1):100–105

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gootwine E (2011) Mini review: breeding Awassi and Assaf sheep for diverse management conditions. Trop Anim Health Prod 43:1289–1296

    Article  PubMed  Google Scholar 

  • Gregory NG (2010) How climatic changes could affect meat quality. Food Res Int 43:1866–1873

    Article  Google Scholar 

  • Habeeb AA (1987) The role of insulin in improving productivity of heat-stressed farm animals with different techniques. PhD thesis. Faculty of Agriculture, Zagazig University, Zagazig, Egypt

    Google Scholar 

  • Habeeb AA, Marai IFM, Kamal TH (1992) Heat stress. In: Philips C, Piggens D (eds) Farm animals and the environment. C.A.B. International, Wallingford, pp 27–47

    Google Scholar 

  • Habeeb AA, El-Masry KA, Aboulnaga AI, Kamal TH (1996) The effect of hot summer climate and level of milk yield on blood biochemistry and circulating thyroid and progesterone hormones in Friesian cows. Arab J Nucl Sci Appl 29:161–173

    Google Scholar 

  • Habeeb AAM, Marai IFM, Kamal TH, Owen JB (1997) Genetic improvement of livestock for heat adaptation in hot climates. In: International conference on animal, poultry, rabbit production and health, Cairo (Egypt), 2–4 September 1997

    Google Scholar 

  • Hafez ESE (1968a) Principles of animal adaptation. In: Hafez ESE (ed) Adaptation of domestic animals. Lee and Febiger, Philadelphia, pp 3–17

    Google Scholar 

  • Hafez ESE (1968b) Environmental effects on animal productivity. In: Hafez ESE (ed) Adaptation of domestic animals. Lee and Febiger, Philadelphia, pp 74–93

    Google Scholar 

  • Hahn GL (1999) Dynamic responses of cattle to thermal heat loads. J Anim Sci 77(2):10–20

    CAS  PubMed  Google Scholar 

  • Hales JRS (1973) Effects of exposure to hot environments on the regional distribution of blood flow and on cardio respiratory function in sheep. Pfulgers Arch 344:133–148

    Article  CAS  Google Scholar 

  • Hales JRS, Brown GD (1974) Net energetic and thermoregulatory efficiency during panting in the sheep. Comp Biochem Physiol A Physiol 49(3):413–422

    Article  CAS  Google Scholar 

  • Hales JRS, Webster MED (1967) Respiratory function during thermal tachypnoea in sheep. J Physiol 190(2):241–260

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hales JRS, Jessen C, Fawcett AA, King RB (1985) Skin AVA and capillary dilatation and constriction induced by local skin heating. Pflugers Arch 404(3):203–207

    Article  CAS  PubMed  Google Scholar 

  • Hall DM, Baumgardner KR, Oberley TD, Gisolfi CV (1999) Splanchnic tissues undergo hypoxic stress during whole body hyperthermia. Am J Phys 276:G1195–G1203

    CAS  Google Scholar 

  • Hall DM, Buettner GR, Oberley LW, Xu L, Matthes RD, Gisolfi CV (2001) Mechanism of circulatory and intestinal barrier dysfunction during whole body hyperthermia. Am J Physiol Heart Circ Physiol 280:509–521

    Google Scholar 

  • Hamadeh SK, Rawda N, Jaber LS, Habre A, Said MA, Barbour EK (2006) Physiological responses to water restriction in dry and lactating Awassi ewes. Livest Sci 101(1):101–109

    Article  Google Scholar 

  • Han AY, Zhang MH, Zuo XL, Zheng SS, Zhao CF, Feng JH, Cheng C (2010) Effect of acute heat stress on calcium concentration, proliferation, cell cycle, and interleukin-2 production in splenic lymphocytes from broiler chickens. Poult Sci 89(10):2063–2070

    Article  CAS  PubMed  Google Scholar 

  • Hansen PJ, Aréchiga CF (1999) Strategies for managing reproduction in the heat-stressed dairy cow. J Anim Sci 77(2):36–50

    CAS  PubMed  Google Scholar 

  • Hanson JD, Baker BB, Bourdon RM (1993) Comparison of the effects of different climate change scenarios on rangeland livestock production. Agric Syst 41(4):487–502

    Article  Google Scholar 

  • Harvell CD, Mitchell CE, Ward JR, Altizer S, Dobson AP, Ostfeld RS, Samuel MD (2002) Climate warming and disease risks for terrestrial and marine biota. Science 296(5576):2158–2162

    Article  CAS  PubMed  Google Scholar 

  • Hatfield J, Boote K, Fay P, Hahn L, Izaurralde C, Kimball BA, Mader T, Morgan J, Ort D, Polley W, Thomson A, Wolfe D (2008) Agriculture. In: The effects of climate change on agriculture, land resources, water resources, and biodiversity in the United States. A report by the U.S. Climate Change Science Program and the Subcommittee on Global Change Research, Washington, DC, USA, p 362

    Google Scholar 

  • Herrero M, Hanotte O, Notenbaert A, Thornton PK (2008) Potential of modelling animal genetic resources data in relation to other existing data sets. In: Pilling D, Rischkowsky B, Scherf B (eds) Caprarola report on the FAO/WAAP workshop on production environment descriptors for animal genetic resources report, Italy, pp 6–8

    Google Scholar 

  • Hinnebusch BF, Ma Q, Henderson JW, Siddique A, Archer SY, Hodin RA (2002) Enterocyte response to ischemia is dependent on differentiation state. J Gastrointest Surg 6:403–409

    Article  PubMed  Google Scholar 

  • Hofman WF, Riegle GD (1977) Thermo respiratory response of shorn and unshorn sheep to mild heat stress. Respir Physiol 30(3):327–338

    Article  CAS  PubMed  Google Scholar 

  • Holmes C, Stephens S, Toner J (1976) Heart rate as a possible indicator of the energy metabolism of calves kept out-of doors. Livest Prod Sci 3:333–341

    Article  Google Scholar 

  • Hooda OH, Naqvi SMK (1990) Physiological responses of Malpura and Avikalin sheep during thermal, nutritional and walking stresses. Ind J Animal Sci 60(8):958–961

    Google Scholar 

  • Hopkins A, Del Prado A (2007) Implications of climate change for grassland in Europe: impacts, adaptations and mitigation options: a review. Grass Forage Sci 62:118–126

    Article  CAS  Google Scholar 

  • Horowitz M (2003) Matching the heart to heat-induced circulatory load: heat-acclimatory responses. News Physiol Sci 18:215–221

    CAS  PubMed  Google Scholar 

  • Horst R, Langworthy M (1971) Observations on the kidney of the desert bighorn sheep. Anat Rec 2:343

    Google Scholar 

  • Hyder I, Ramesh K, Sharma S, Uniyal S, Yadav VP, Panda RP, Sarkar M (2013) Effect of different dietary energy levels on physio-biochemical, endocrine changes and mRNA expression profile of leptin in goat (Capra hircus). Livest Sci 152:63–73

    Article  Google Scholar 

  • Igbokwe IO (1993) Haemoconcentration in Yankasa sheep exposed to prolonged water deprivation. Small Rumin Res 12:99–105

    Article  Google Scholar 

  • Indu S, Sejian V, Naqvi SMK (2014) Impact of simulated heat stress on growth, physiological adaptability, blood metabolites and endocrine responses in Malpura ewes under semi-arid tropical environment. Anim Prod Sci 55(6):766–776

    Article  CAS  Google Scholar 

  • Iñiguez L (2005) Small ruminant breeds in West Asia and North Africa. ICARDA Caravan Issue22. [Online] Available: http://www.icarda.org/Publications/Caravan/Caravan22/Focus_3.htm [2012 Dec 22]

  • IPCC (Intergovernmental Panel on Climate Change) (2007) Climate Change: Synthesis Report. http://www.ipcc.ch/pdf /assessment-report/ar4/syr/ar4_syr_spm.pdf

  • Jaber LS, Habre A, Rawda N, AbiSaid M, Barbour EK, Hamadeh SK (2004) The effect of water restriction on certain physiological parameters in Awassi sheep. Small Rumin Res 54:115–120

    Article  Google Scholar 

  • Jaber LS, Hanna N, Barbour EK, Abi Said M, Rawda N, Chedid M, Hamadeh SK (2011) Fat mobilization in water restricted Awassi ewes supplemented with vitamin C. J Arid Environ 75:625–628

    Article  Google Scholar 

  • Jordan ER (2003) Effects of heat stress on reproduction. J Dairy Sci 86:104–114

    Article  Google Scholar 

  • Kamal TH, El-Masry KA, Abdel-Samee AM (1989a) Influences of hot climate and spray cooling on daily body gain and thyroxine and cortisol levels of Friesian calves. EAAP Publication, Netherlands

    Google Scholar 

  • Kamal TH, Habeeb AA, Abdel-Samee AM, Marai IF (1989b) Milk production of heat-stressed Friesian cows and its improvement in the subtropics. EAAP Publication, Wageningen

    Google Scholar 

  • Kamiya M, Kamiya Y, Tanaka M, Shioya S (2006) Milk protein production and plasma 3-methylhistidine concentration in lactating Holstein cows exposed to high ambient temperatures. Asian-Aust J Animal Sci 19(8):1159–1163

    Article  CAS  Google Scholar 

  • Kannan G, Terril TH, Kouokou B, Gelaye S, Amoah EA (2002) Simulated pre slaughter holding and isolation effects on stress responses and live weight shrinkage in meat goats. J Anim Sci 80:1771–1780

    Article  CAS  PubMed  Google Scholar 

  • Kay RNB (1997) Responses of african livestock and wild herbivores to drought. J Arid Environ 37:683–694

    Article  Google Scholar 

  • Korde JP, Singh G, Varshney VP, Shukla DC (2007) Effects of long-term heat exposure on adaptive mechanism of blood acid-base in buffalo calves. Asian-Aust J Animal Sci 20(5):742–747

    Article  CAS  Google Scholar 

  • Koubková M, Knížková I, Kunc P, Härtlová H, Flusser J, Doležal O (2002) Influence of high environmental temperatures and evaporative cooling on some physiological, hematological and biochemical parameters in high-yielding dairy cows. Czech J Animal Sci 47:309–318

    Google Scholar 

  • Kregel KC (2002) Heat shock proteins: modifying factors in physiological stress responses and acquired thermotolerance. J Appl Physiol 92:2177–2186

    Article  CAS  PubMed  Google Scholar 

  • Lacetera N, Bernabucci U, Basiricò L, Morera P, Nardone A (2009) Heat shock impairs DNA synthesis and down-regulates gene expression for leptin and Ob-Rb receptor in concanavalin A-stimulated bovine peripheral blood mononuclear cells. Vet Immunol Immunopathol 127(1–2):190–194

    Article  CAS  PubMed  Google Scholar 

  • Laden S, Nehmadi L, Yagil R (1987) Dehydration tolerance in Awassi fat-tailed sheep. Can J Zool 65:363–367

    Article  Google Scholar 

  • Lambert GP, Gisolfi CV, Berg DJ, Moseley PL, Oberley LW, Kregel KC (2002) Hyperthermia-induced intestinal permeability and the role of oxidative and nitrosative stress. J Appl Physiol 92:1750–1761

    Article  CAS  PubMed  Google Scholar 

  • Lan HC, Reddy PG, Chambers MA, Walker G, Srivastava KK, Ferguson JA (1995) Effect of stress on interleukin-2 receptor expression by bovine mononuclear leukocytes. Vet Immunol Immunopathol 49(3):241–249

    Article  CAS  PubMed  Google Scholar 

  • Leng RA (1984) Supplementation of tropical and subtropical pastures for ruminant production. In: Gilchrist FMC, Macki RI (eds) Herbivore nutrition in the tropics and subtropics. The Science Press, Craighall, pp 129–144

    Google Scholar 

  • Leon LR (2008) Thermoregulatory responses to environmental toxicants: the interaction of thermal stress and toxicant exposure. Toxicol Appl Pharmacol 233:146–161

    Article  CAS  PubMed  Google Scholar 

  • Lindquist S (1986) The heat-shock response. Annu Rev Biochem 55:1151–1191

    Article  CAS  PubMed  Google Scholar 

  • Linington MJ (1990) The use of Sanga cattle in beef production. Technical Communication-Department of Agricultural Development, South Africa, 223, pp 31–37

    Google Scholar 

  • Macfarlane WV, Morris RJH, Howard B (1958) Heat and water in tropical merino sheep. Aust J Agric Res 9(2):217–228

    Article  Google Scholar 

  • Mader TL, Davis MS, Brown-Brandl T (2006) Environmental factors influencing heat stress in feedlot cattle. J Anim Sci 84:712–719

    Article  CAS  PubMed  Google Scholar 

  • Madzwamuse M (2010) Climate governance in Africa: adaptation strategy and institutions. A synthesis report submitted to Heinrich Böll Stiftung, Zimbabwe

    Google Scholar 

  • Mahgoub O, Kadim IT, Al-Dhahab A, Bello RB, Al Amri IS, Ali AAA, Khalaf S, Johnson EH, Gaafar OM (2010) An assessment of Omani native sheep fiber production and quality characteristics. Sultan Qaboos Univ Agric Mar Sci 15(special issue):9–14

    Google Scholar 

  • Maia ASC, Silva RG, Bertipaglia ECA (2003) Características do pelame de vacas Holandesas em ambiente tropical: um estudo genético e adaptativo. Rev Bras Zootec 32:843–853

    Article  Google Scholar 

  • Maia ASC, Silva RG, Andrade PC (2009) Efeitos da temperatura e da movimentação do ar sobre o isolamento térmico do velo de ovinos em câmara climática. Rev Bras Zootec 38:104–108

    Article  Google Scholar 

  • Marai IFM, Habeeb AAM (2010) Buffalo’s biological functions as affected by heat stress – a review. Livest Sci 127:89–109

    Article  Google Scholar 

  • Marai IFM, Bahgat LB, Shalaby TH, Abdel-Hafez MA (2000) Fattening performance, some behavioural traits and physiological reactions of male lambs fed concentrates mixture alone with or without natural clay, under hot summer of Egypt. Ann Arid Zone 39(4):449–460

    Google Scholar 

  • Marai IFM, El-Darawany AA, Fadiel A, Abdel-Hafez MAM (2007) Physiological traits as affected by heat stress in sheep – a review. Small Rumin Res 71:1–12

    Article  Google Scholar 

  • Maurya VP, Naqvi SMK, Gulyani R, Joshi A, Mittal JP (2005) Effect of thermal stress on sexual behaviour of superovulated Bharat Merino Ewes. Asian Australas J Anim Sci 18(10):1403–1406

    Article  Google Scholar 

  • Maurya VP, Naqvi SMK, Joshi A, Mittal JP (2007) Effect of high temperature stress on physiological responses of Malpura sheep. Ind J Animal Sci 77:1244–1247

    Google Scholar 

  • Maurya VP, Sejian V, Kumar D, Naqvi SMK (2010) Effect of induced body condition score differences on sexual behavior, scrotal measurements, semen attributes, and endocrine responses in Malpura rams under hot semi-arid environment. J Anim Physiol Anim Nutr 94:e308–e317

    Article  CAS  Google Scholar 

  • Maurya VP, Sejian V, Kumar D, Naqvi SMK (2016) Impact of heat stress, nutritional restriction and combined stresses (heat and nutritional) on growth and reproductive performance of Malpura rams under semi-arid tropical environment. J Anim Physiol Anim Nutr 100:938–946

    Article  CAS  Google Scholar 

  • McDowell LR (1985) Nutrition of grazing ruminants in warm climates: animal feeding and nutrition. Academic, Florida

    Google Scholar 

  • McManus C, Paluda GR, Louvandini H, Gugel R, Sasaki LCB, Paiva SR (2009) Heat tolerance in Brazilian sheep: physiological and blood parameters. Trop Anim Health Prod 41:95–101

    Article  PubMed  Google Scholar 

  • McManus C, Louvandini H, Paim TP, Martins RS, Barcellos JOJ, Cardoso C, Santana OA (2011) The challenge of sheep farming in the tropics: aspects related to heat tolerance. Rev Bras Zootec 40(Suppl. Esp):107–120

    Google Scholar 

  • Mertyna P, Hines-Peralta A, Liu ZJ, Halpern E, Goldberg W, Goldberg SN (2007) Radiofrequency ablation: variability in heat sensitivity in tumors and tissues. J Vasc Interv Radiol 18(5):647–654

    Article  PubMed  Google Scholar 

  • Minka NS, Ayo JO (2008) Haematology and behaviour of pullets transported by road and administered with ascorbic acid during the hot dry season. Res Vet Sci 85:387–393

    Article  CAS  Google Scholar 

  • Minka NS, Ayo JO (2009) Physiological responses of food animals to road transportation tress. Afr J Biotechnol 8(25):7415–7427

    CAS  Google Scholar 

  • Minka NS, Ayo JO (2011) Modulating role of vitamins C and E against transport induce stress in pullets during the hot-dry conditions. ISRN Vet Sci. doi:10.5402/2011/497138

    PubMed Central  Google Scholar 

  • Minson DJ (1990) Forage in ruminant nutrition. Academic Press, San Diego, p 483

    Google Scholar 

  • Mittal JP, Gosh PK (1979) Body temperature, respiration and pulse rate in Corriedale, Marwari and Magra sheep in the Rajasthan desert. J Agric Sci (Camb) 93:587–591

    Article  Google Scholar 

  • Monty JDE, Kelley LM, Rice WR (1991) Acclimatization of St. Croix, Karakul and Rambouilet sheep to intense and dry summer heat. Small Rumin Res 4:379–392

    Article  Google Scholar 

  • Mortola JP, Frappell PB (2000) Ventilatory responses to changes in temperature in mammals and other vertebrates. Annu Rev Physiol 62:847–874

    Article  CAS  PubMed  Google Scholar 

  • Mount LE (1979) Adaptation to thermal environment-man and his productive animals. Edward Arnold, London

    Google Scholar 

  • Muller PB (1982) Bioclimatologia aplicada aos animais domésticos. Sulina, Porto Alegre, p 158

    Google Scholar 

  • Naqvi SMK, Sejian V, Karim SA (2013) Effect of feed flushing during summer season on growth, reproductive performance and blood metabolites in Malpura ewes under semi-arid tropical environment. Trop Anim Health Prod 45:143–148

    Article  PubMed  Google Scholar 

  • Narula HK, Kumar A, Ayub M, Mehrotra V (2010) Growth rate and wool production of Marwari lambs under arid region of Rajasthan. Ind J Animal Sci 80:350–353

    Google Scholar 

  • Nazifi S, Saeb M, Rowghani E, Kaveh K (2003) The influence of thermal stress on serum biochemical parameters of Iranian fat-tailed sheep and their correlation with triiodothyronine (T3), thyroxine (T4) and cortisol concentrations. Comp Clin Pathol 12:135–139

    Article  CAS  Google Scholar 

  • Nobel RL, Jobst SM, Dransfield MBG, Pandolfi SM, Bailey TL (1997) Use of radio frequency data communication system, HeatWatch®, to describe behavioral estrus in dairy cattle. J Dairy Sci 80(1):179

    Google Scholar 

  • Ondruska L, Rafay J, Okab AB, Ayoub MA, Al-Haidary AA, Samara EM, Parkanyi V, Chrastinova L, Jurcik R, Massanyi P, Lukac N, Supuka P (2011) Influence of elevated ambient temperature upon some physiological measurements of New Zealand White rabbits. Vet Med 56(4):180–186

    Google Scholar 

  • Ooue A, Kuwahara TI, Shamsuddin AKM, Inoue Y, Nishiyasu T, Koga S, Kondo N (2007) Changes in blood flow in a conduit artery and superficial vein of the upper arm during passive heating in humans. Eur J Appl Physiol 101:97–103

    Article  PubMed  Google Scholar 

  • Pearce SC, Mani V, Weber TE, Rhoads RP, Patience JF, Baumgard LH, Gabler NK (2013) Heat stress and reduced plane of nutrition decreases intestinal integrity and function in pigs. J Anim Sci 91:5183–5193

    Article  CAS  PubMed  Google Scholar 

  • Pereira CCJ (2005) Fundamentos de bioclimatologia aplicados à produção animal. FEPMVZ, Belo Horizonte

    Google Scholar 

  • Rai AK, Singh M, More T (1979) Cutaneous water loss and respiration rates of various breeds of sheep at high ambient temperatures. Trop Anim Health Prod 11:51–56

    Article  CAS  PubMed  Google Scholar 

  • Ramesh K, Hyder I, Uniyal S, Yadav VP, Panda RP, Gupta M, Dangi SS, Maurya VP, Singh G, Kumar P, Mitra A, Sharma S, Sarkar M (2013) Modulation of physio-biochemical responses and relative expression of heat stress associated genes by melatonin in goats exposed to heat stress. Phot J Vet Sci 114:207–217

    Google Scholar 

  • Rashid MM, Hossain MM, Azad MAK, Hashem MA (2013) Long term cyclic heat stress influences physiological responses and blood characteristics in indigenous sheep. Bangl J Animal Sci 42(2):96–100

    Google Scholar 

  • Rashwan Ali A, Ibrahim Fayez M, Marai IFM (2004) Rabbits behavioural response to climatic and managerial conditions- are view. Arch Tierzucht Dummerstorf 47(5):469–482

    Google Scholar 

  • Rasooli A, Nouri M, Khadjeh GH, Rasekh A (2004) The influence of seasonal variations on thyroid activity and some biochemical parameters of cattle. Iran J Vet Res 5(2):1383–1391

    Google Scholar 

  • Rivington M, Matthews KB, Buchan K, Miller D, Russell G (2009) Investigating climate change impacts and adaptation options using integrated assessment methods. Asp Appl Biol 93:85–92

    Google Scholar 

  • Robertshaw, D. and Zine-Filali, R. 1995. Thermoregulation and water balance in the camel: a comparison with other ruminant species. In: von Engelhardt W, Leonhard-Marek S, Breves G, Giesecke D (eds) Ruminant physiology: digestion, metabolism, growth and reproduction. Proceedings of the 8th international symposium on ruminant physiology, Delmar Publishers, pp 563–578

    Google Scholar 

  • Robinson NE (2002) Hemostasis. In: Cunningham JG (ed) Textbook of veterinary physiology, 2nd edn. W. B. Saunders Company, St. Louis, pp 516–544

    Google Scholar 

  • Rollwagen FM, Madhavan S, Singh A, Li YY, Wolcott K, Maheshwari R (2006) IL-6 protects enterocytes from hypoxia-induced apoptosis by induction of bcl-2 mRNA and reduction of fas mRNA. Biochem Biophys Res Commun 347:1094–1098

    Article  CAS  PubMed  Google Scholar 

  • Romanini, C. E. B., et al. 2008. Impact of global warming on Brazilian beef production. In: Proceedings of the congress on Livestock Environment VIII, Iguassu Falls, 31 August–4 September 2008

    Google Scholar 

  • Rosa HJD, Bryant MJ (2003) Seasonality of reproduction in sheep. Small Rumin Res 48:155–171

    Article  Google Scholar 

  • Rubsamen K, Hales JRS (1985) Circulatory adjustments of heat stressed livestock. In: Yousef MK (ed) Stress physiology in livestock. Volume 1: Basic principles. Florida, CRC Press, pp 143–155

    Google Scholar 

  • Salem IA, Kobeisy MA, Zenhom M, Hayder M (1998) Effect of season and ascorbic acid supplementation on some blood constituents of suckling Chios lambs and its crosses with Ossimi sheep in upper Egypt. Assiut J Agric Sci 29:87–100

    Google Scholar 

  • Saxena VK, Krishnaswamy N (2012) Molecular mechanisms of livestock adaptation. In: Environmental stress and Amelioration in livestock production, pp 299–315

    Google Scholar 

  • Schmidt-Neilsen B, O’Dell R (1961) Structure and concentration mechanism in mammalian kidney. Am J Phys 200:1191124

    Google Scholar 

  • Sejian V (2013) Climate change: impact on production and reproduction, adaptation mechanisms and mitigation strategies in small ruminants: a review. Ind J Small Rumin 19(1):1–21

    Google Scholar 

  • Sejian V, Srivastava RS (2010a) Interrelationship of endocrine glands under thermal stress: effect of exogenous glucocorticoids on mineral, enzyme, thyroid hormone profiles and phagocytosis index of Indian goats. Endocr Regul 44:101–107

    Article  CAS  PubMed  Google Scholar 

  • Sejian V, Srivastava RS (2010b) Pineal-adrenal relationship under thermal stress with emphasis on effect of Pineal proteins on endocrine profiles in chemically adrenalectomized does. Glob Vet 4(3):249–254

    CAS  Google Scholar 

  • Sejian V, Srivastava RS, Varshney VP (2008a) Pineal-adrenal relationship: modulating effects of glucocorticoids on pineal function to ameliorate thermal-stress in goats. Asian-Aust J Animal Sci 21:988–994

    Article  CAS  Google Scholar 

  • Sejian V, Sanyal S, Das PK, Ghosh PR, Sivakumar B, Pandiyan GDV (2008b) Effect of unilateral adrenalectomy on the blood biochemistry of Black Bengal goats (Capra hircus). Turk J Vet Anim Sci 32(4):249–254

    CAS  Google Scholar 

  • Sejian V, Maurya VP, Naqvi SMK (2010a) Adaptability and growth of Malpura ewes subjected to thermal and nutritional stress. Trop Anim Health Prod 42:1763–1770

    Article  PubMed  Google Scholar 

  • Sejian V, Maurya VP, Naqvi SMK (2010b) Adaptive capability as indicated by endocrine and biochemical responses of Malpura ewes subjected to combined stresses (thermal and nutritional) under semi-arid tropical environment. Int J Biometeorol 54:653–661

    Article  PubMed  Google Scholar 

  • Sejian V, Maurya VP, Naqvi SMK, Kumar D, Joshi A (2010c) Effect of induced body condition score differences on physiological response, productive and reproductive performance of Malpura ewes kept in a hot, semi-arid environment. J Anim Physiol Anim Nutr 94(2):154–161

    Article  CAS  Google Scholar 

  • Sejian V, Maurya VP, Naqvi SMK (2011) Effect of thermal, nutritional and combined (thermal and nutritional) stresses on growth and reproductive performance of Malpura ewes under semi-arid tropical environment. J Anim Physiol Anim Nutr 95:252–258

    Article  CAS  Google Scholar 

  • Sejian V, Maurya VP, Naqvi SMK (2012) Effect of walking stress on growth, physiological adaptability and endocrine responses in Malpura ewes under semi-arid tropical environment. Int J Biometeorol 56:243–252

    Article  PubMed  Google Scholar 

  • Sejian V, Indu S, Naqvi SMK (2013a) Impact of short term exposure to different environmental temperature on the blood biochemical and endocrine responses of Malpura ewes under semi-arid tropical environment. Ind J Animal Sci 83(11):1155–1160

    CAS  Google Scholar 

  • Sejian V, Maurya VP, Kumar K, Naqvi SMK (2013b) Effect of multiple stresses (thermal, nutritional and walking stress) on growth, physiological response, blood biochemical and endocrine responses in Malpura ewes under semi-arid tropical environment. Trop Anim Health Prod 45:107–116

    Article  PubMed  Google Scholar 

  • Sejian V, Bahadur S, Naqvi SMK (2014a) Effect of nutritional restriction on growth, adaptation physiology and estrous responses in Malpura ewes. Anim Biol 64:189–205

    Article  Google Scholar 

  • Sejian V, Singh AK, Sahoo A, Naqvi SMK (2014b) Effect of mineral mixture and antioxidant supplementation on growth, reproductive performance and adaptive capability of Malpura ewes subjected to heat stress. J Anim Physiol Anim Nutr 98:72–83

    Article  CAS  Google Scholar 

  • Sejian V, Kumar D, Gaughan JB, SMK N (2016) Effect of multiple environmental stressors on the adaptive capability of Malpura rams based on physiological responses in a semi-arid tropical environment. J Vet Behav Clin Appl Res. doi:10.1016/j.jveb.2016.10.009

    Google Scholar 

  • Shaffer L, Roussel JD, Koonce KL (1981) Effects of age, temperature-season and breed on blood characteristics of dairy cattle. J Dairy Sci 64:62–70

    Article  CAS  PubMed  Google Scholar 

  • Shearer JK (1990) Effects of high environmental temperature on production, reproduction, and health of dairy cattle. Agri-Practce 11:5–17

    Google Scholar 

  • Shebaita MK, Kamal TH (1973) In vivo body composition in ruminants. I. Blood volume in Friesian and water buffaloes. Alex J Agric Res 1:329–350

    Google Scholar 

  • Shelton M (2000) Reproductive performance of sheep exposed to hot environments. In: Malik RC, Razaqque MA, Al-Nasser AY (eds) Sheep production in hot and Arid zones. Kuwait Institute for Scientific Research, pp 155–162

    Google Scholar 

  • Shetaewi MM (1998) Efficacy of dietary high levels of antioxidant vitamins C and E for rabbits subjected to crowding stress. Egypt J Rabbit Sci 8:95–112

    Google Scholar 

  • Shinde AK, Sejian V (2013) Sheep husbandry under changing climate scenario in India: an overview. Ind J Animal Sci 83(10):998–1008

    Google Scholar 

  • Silanikove N (1992) Effects of water scarcity and hot environment on appetite and digestion in ruminants: a review. Livest Prod Sci 30:175–194

    Article  Google Scholar 

  • Silanikove N (2000) Effects of heat stress on the welfare of extensively managed domestic ruminants. Livest Prod Sci 67:1–18

    Article  Google Scholar 

  • Sileshi Z, Tegegne A, Tsadik T (2003) Water resources for livestock in Ethiopia: Implications for research and development. In: McCornick P, Kamara A, Tadesse G (eds) Integrated water and land management research and capacity building priorities for Ethiopia. Proceedings of a Ministry of Water Resources, Ethiopian Agricultural Research Organization, International Water Management Institute, and International Livestock Research Institute International Workshop, 2002 December 2–4. International Livestock Research Institute, Addis Ababa, Ethiopia

    Google Scholar 

  • Silva RG (1998) Estimação do balanço térmico por radiação em vacas holandesas ao sol e à sombra. In: Congresso Brasileiro de Biometeorologia, 2, Goiânia, pp 118–128

    Google Scholar 

  • Silva RG (2000) Introdução à bioclimatologia animal. São Paulo, Nobel, p 286

    Google Scholar 

  • Silva RG (2007) Evaluation of thermal stress indexes for dairy cows in tropical regions. Rev Bras Zootec 36(4):1192–1198

    Article  Google Scholar 

  • Silva RG, La Scala Jr N, Tonhati H (2003) Radiative properties of the skin and haircoat of cattle and other animals. Trans ASAE 46(3):913

    Google Scholar 

  • Singh M, Rai AK, Karim SA (1983) Relative heat tolerance of Indian Nali and Soviet merino x Nali halfbred sheep to continuous 35°C and 40°C temperature conditions. J Anim Physiol Anim Nutr 49:18–23

    CAS  Google Scholar 

  • Smith B, McNabb D, Smithers J (1996) Agricultural adaptation to climatic variation. Climate Change 43:7–29

    Article  Google Scholar 

  • Soleimani AF, Zulkifli I, Omar AR, Raha AR (2011) Physiological responses of 3 chicken breeds to acute heat stress. Poult Sci 90:1435–1440

    Article  CAS  PubMed  Google Scholar 

  • Sonna LA, Gaffin SL, Pratt RE, Cullivan ML, Angel KC, Lilly CM (2002) Selected contribution: effect of acute heat shock on gene expression by human peripheral blood mononuclear cells. J Appl Physiol 92:2208–2220

    Article  CAS  PubMed  Google Scholar 

  • Srikandakumar A, Johnson EH, Mahgoub O (2003) Effect of heat stress on respiratory rate, rectal temperature and blood chemistry in Omani and Australian Merino sheep. Small Rumin Res 49:193–198

    Article  Google Scholar 

  • Sritharet N, Hara H, Yoshida Y, Hanzawa K, Seiki Watanabe S (2002) Effects of heat stress on histological features in pituicytes and hepatocytes, and enzyme activities of liver and blood plasma in Japanese quail (Coturnix japonica). J Poult Sci 39(3):167–168

    Article  CAS  Google Scholar 

  • Stone WC, Chase LE, Fox DG (1992) Field application of the Cornell Net carbohydrate and protein system in a progressive dairy herd. Proceedings Cornell Nutrition conference, Ithaca, pp 168–172

    Google Scholar 

  • Summers BA (2009) Climate change and animal disease. Vet Pathol Online 46(6):1185–1186

    Article  CAS  Google Scholar 

  • Sunagawa K, Arikawa Y, Higashi M, Matsuda H, Takahashi H, Kuriwaki Z, Kojiya Z, Uechi S, Hong F (2002) Direct effect of a hot environment on ruminal motility in sheep. Asian-Aust J Animal Sci 6:859–865

    Article  Google Scholar 

  • Symington RB (1960) Studies on the adaptability of three breeds of sheep to a tropical environment modified by altitude II. Responses in body, skin and coat temperatures, cardio-respiratory frequencies and rate of moisture secretion of ewes to the diurnal fluctuation in ambient temperature during the hottest part of the year. J Agric Sci 55(3):295–302

    Article  Google Scholar 

  • Tabachnick WJ (2010) Challenges in predicting climate and environmental effects on vector-borne disease episystems in a changing world. J Exp Biol 213(6):946–954

    Article  CAS  PubMed  Google Scholar 

  • Thompson GE (1985) Respiratory systems. In: Yousef MK (ed) Stress physiology in livestock. Volume 1: Basic principles. Florida, CRC Press, pp 155–162

    Google Scholar 

  • Thwaites CJ (1985) Physiological responses and productivity in sheep. In: Yousef MK (ed) Stress physiology in livestock. Volume 1: Basic principles. Florida, CRC Press, pp 155–162

    Google Scholar 

  • Todini L (2007) Thyroid hormones in small ruminants: effects of endogenous, environmental and nutritional factors

    Google Scholar 

  • Turner JC (1973) Water, energy and electrolyte balance in the desert bighorn sheep, Ovis canadensis. Ph.D. thesis, University of California, Riverside, CA, p 1276

    Google Scholar 

  • Varady KA, Roohk DJ, Loe YC, McEvoy-Hein BK, Hellerstein MK (2007) Effects of modified alternateday fasting regimens on adipocyte size, triglyceride metabolism, and plasma adiponectin levels in mice. J Lipid Res 48:2212–2219

    Article  CAS  PubMed  Google Scholar 

  • Verissimo, C. J., Titto, C. G., Katiki, L. M. et al. 2009. Tolerância ao calor em ovelhas Santa Inês de pelagem clara e escura. Rev Bras Saúde Prod Anim, v.10, p.159-167.

    Google Scholar 

  • Vidair CA, Dewey WC (1988) Two distinct modes of hyperthermic cell death. Radiat Res 116(1):157–171

    Article  CAS  PubMed  Google Scholar 

  • Waites GMH, Moule GR (1961) Relation of vascular heat exchange to temperature regulation in the testis of the Ram. J Reprod Fertil 2:213–224

    Article  CAS  PubMed  Google Scholar 

  • Waites GMH, Voglmayr JK (1962) The functional activity and control of the apocrine sweat glands of the scrotum of the ram. Aust J Agric Res 14(6):839–851

    Article  Google Scholar 

  • Wallington TJ, Srinivasan J, Nielsen OJ, Highwood EJ (2004) Environmental and ecological chemistry – greenhouse gases and global warming

    Google Scholar 

  • Wang J, Homer RJ, Chen Q, Elias JA (2000) Endogenous and exogenous IL-6 inhibit aeroallergen-induced Th2 inflammation. J Immunol 165(7):4051–4061

    Article  CAS  PubMed  Google Scholar 

  • Webster MED, Johnson KG (1964) Distribution of temperature in the skin of sheep exposed to moderate environments. Nature 201:208–209

    Article  CAS  PubMed  Google Scholar 

  • West JW (2003) Effects of heat-stress on production in dairy cattle. J Dairy Sci 86:2131–2144

    Article  CAS  PubMed  Google Scholar 

  • Wilson RT (1984) The camel. Longman Group Ltd., London, pp 68–82

    Google Scholar 

  • Wolfenson D, Roth Z, Meidan R (2000) Impaired reproduction in heat-stressed cattle: basic and applied aspects. Anim Reprod Sci 60–61:535–547

    Article  PubMed  Google Scholar 

  • Yamamoto S, Ogura Y (1985) Variations in heart rate and relationship between heart rate and heat production of breeding Japanese Black Cattle. Jpn J Livest Manag 3:109–118

    Google Scholar 

  • Yeates NTM (1954) Environmental control of coat changes in cattle. Nature 174:609–610

    Article  CAS  PubMed  Google Scholar 

  • Yousef MK, Johnson HD (1985) Endocrine system and thermal environment. In: Yousef MK (ed) In stress physiology in livestock-volume I basic principles. CRC Press, Florida, pp 133–141

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Veerasamy Sejian .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd.

About this chapter

Cite this chapter

Sejian, V. et al. (2017). Adaptive Mechanisms of Sheep to Climate Change. In: Sejian, V., Bhatta, R., Gaughan, J., Malik, P., Naqvi, S., Lal, R. (eds) Sheep Production Adapting to Climate Change. Springer, Singapore. https://doi.org/10.1007/978-981-10-4714-5_5

Download citation

Publish with us

Policies and ethics