Skip to main content

Oxidative Stress-Related MicroRNAs as Diagnostic Markers: A Newer Insight in Diagnostics

  • Chapter
  • First Online:
Oxidative Stress: Diagnostic Methods and Applications in Medical Science

Abstract

Despite rapid strides in the medical and technological fields during the last four decades including the development of nucleic acid and protein-based biomarkers, the mortality still remains a burning problem because of the delayed diagnosis of many diseases. This is particularly ascribed to the lower specificity and sensitivity of the methods used for diagnosis. The compelling situation has shifted the focus of expression biology toward identification and development of sensitive and specific markers for diagnosis and prognosis of different diseases by using microRNAs (miRNAs). miRNAs are short noncoding RNAs of 18–25 nucleotides. In mammals and multicellular organisms, they play significant role in nearly all biological pathways. Next-generation sequencing techniques have played role in discovery of noncoding RNA molecules. As compared to total protein coding sequences, large numbers of noncoding RNAs exist which are key to many new discoveries related to biological phenomena and pathologies. Noncoding RNA family in humans consists of about 1400 miRNAs. Their functional significance has been shown in developmental and pathological processes. miRNAs can be easily detected in tissue samples and body fluid of the patients. Hence, miRNAs could act as potential biomarker candidates. miRNA molecules have already made their way to clinical medicine as biomarkers for diagnosis and prognosis of diseases as well as therapeutic targets for treatment. Redox imbalance leads to oxidative stress which is associated with various diseases. Accumulated evidence suggests that oxidative stress stimulates production of several miRNAs which area known as oxidative stress-responsive miRNAs. They further play a role in connecting the dysregulated antioxidant defense system with imbalanced redox state. The present chapter summarizes recent findings on diagnostic and prognostic ability of oxidative stress-responsive miRNAs. In addition, the role of miRNAs in cancer has also been discussed. Studies on functional and regulatory aspects of oxidative stress-associated miRNAs will provide new direction to discovery of novel diagnostic and prognostic biomarkers.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Bertoli G, Cava C, Castiglioni I. MicroRNAs: new biomarkers for diagnosis, prognosis, therapy prediction and therapeutic tools for breast cancer. Theranostics. 2015;5:1122–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bertoli G, Cava C, Castiglioni I. MicroRNAs as biomarkers for diagnosis, prognosis and theranostics in prostate cancer. Int J Mol Sci. 2016;17:421. doi:10.3390/ijms17030421.

    Article  PubMed  PubMed Central  Google Scholar 

  • Coppedè F, Migliore L. DNA repair in premature aging disorders and neurodegeneration. Curr Aging Sci. 2010;3:3–19.

    Article  PubMed  Google Scholar 

  • Corsini LR, Bronte G, Terrasi M, Amodeo V, Fanale D, Fiorentino E, Cicero G, Bazan V, Russo A. The role of microRNAs in cancer: diagnostic and prognostic biomarkers and targets of therapies. Expert Opin Ther Targets. 2012;16:S103–9.

    Article  CAS  PubMed  Google Scholar 

  • Czech B, Hannon GJ. Small RNA sorting: matchmaking for Argonautes. Nat Rev Genet. 2011;12:19–31.

    Article  CAS  PubMed  Google Scholar 

  • Fanjul-Fernandez M, Folgueras AR, Cabrera S, Lopez-Otin C. Matrix metalloproteinases: evolution, gene regulation and functional analysis in mouse models. Biochim Biophys Acta-Mol Cell Res. 2010;1803:3–19.

    Article  CAS  Google Scholar 

  • Felicetti F, Errico MC, Bottero L, Segnalini P, Stoppacciaro A, Biffoni M, Felli N, Mattia G, Petrini M, Colombo MP, Peschle C, Care A. The promyelocytic leukemia zinc finger-microRNA-221/−222 pathway controls melanoma progression through multiple oncogenic mechanisms. Cancer Res. 2008;68:2745–54.

    Article  CAS  PubMed  Google Scholar 

  • Feng B, Chen S, George B, Feng Q, Chakrabarti S. miR133a regulates cardiomyocyte hypertrophy in diabetes. Diabetes Metab Res Rev. 2010;26:40–9.

    Article  CAS  PubMed  Google Scholar 

  • Feng B, Ruiz MA, Chakrabarti S. Oxidative-stress-induced epigenetic changes in chronic diabetic complications. Physiol Pharmacol. 2013;91:213–20. dx.doi.org/10.1139/cjpp-2012-0251

    Article  CAS  Google Scholar 

  • He ML, Luo MXM, Lin MC, Kung HF. MicroRNAs: potential diagnostic markers and therapeutic targets for EBV-associated nasopharyngeal carcinoma. Biochim Biophys Acta-Rev Cancer. 2012;1825:1–10.

    Article  CAS  Google Scholar 

  • Huang SL, Wu SQ, Ding J, Lin J, Wei L, Gu JR, He XH. MicroRNA-181a modulates gene expression of zinc finger family members by directly targeting their coding regions. Nucleic Acids Res. 2010;38:7211–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jansson MD, Lund AH. MicroRNA and cancer. Mol Oncol. 2012;6:590–610.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kato M, Zhang J, Wang M, Lanting L, Yuan H, Rossi JJ. MicroRNA-192 in diabetic kidney glomeruli and its function in TGF-beta induced collagen expression via inhibition of E-box repressors. Proc Natl Acad Sci U S A. 2007;104:3432–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kumar S, Pandey AK. Free radicals: health implications and their mitigation by herbals. Br J Med Med Res. 2015;7:438–57. doi:10.9734/BJMMR/2015/16284.

    Article  Google Scholar 

  • Lim LP, Lau NC, Garrett-Engele P, Grimson A, Schelter JM, Castle J, Bartel DP, Linsley PS, Johnson JM. Microarray analysis shows that some microRNAs downregulate large numbers of target mRNAs. Nature. 2005;433:769–73.

    Article  CAS  PubMed  Google Scholar 

  • Liu XQ, Wang C, Chen ZJ, Jin Y, Wang Y, Kolokythas A, Dai Y, Zhou XF. MicroRNA-138 suppresses epithelial-mesenchymal transition in squamous cell carcinoma cell lines. Biochem J. 2011;440:23–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Magenta A, Cencioni C, Fasanaro P, Zaccagnini G, Greco S, Sarra-Ferraris G, Antonini A, Martelli F, Capogrossi MC. miR-200c is upregulated by oxidative stress and induces endothelial cell apoptosis and senescence via ZEB1 inhibition. Cell Death Differ. 2011;18:1628–39.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Magenta A, Greco S, Gaetano C, Martelli F. Oxidative stress and microRNAs in vascular diseases. Int J Mol Sci. 2013;14:17319–46.

    Article  PubMed  PubMed Central  Google Scholar 

  • Mateescu B, Batista L, Cardon M, Gruosso T, de Feraudy Y, Mariani O, Nicolas A, Meyniel JP, Cottu P, Sastre-Garau X. miR-141 and miR-200a act on ovarian tumorigenesis by controlling oxidative stress response. Nat Med. 2011;17:1627–35.

    Article  CAS  PubMed  Google Scholar 

  • Menghini R, Casagrande V, Cardellini M, Martelli E, Terrinoni A, Amati F, Vasa-Nicotera M, Ippoliti A, Novelli G, Melino G. MicroRNA 217 modulates endothelial cell senescence via silent information regulator. Circulation. 2001;120:1524–32.

    Article  Google Scholar 

  • Narasimhan M, Riar AK, Rathinam ML, Vedpathak D, Henderson G, Mahimainathan L. Hydrogen peroxide responsive miR153 targets Nrf2/ARE cytoprotection in paraquat induced dopaminergic neurotoxicity. Toxicol Lett. 2014;228:179–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pal MK, Jaiswar SP, Dwivedi VN, Tripathi AK, Dwivedi A, Sankhwar P. MicroRNA: a new and promising potential biomarker for diagnosis and prognosis of ovarian cancer. Cancer Biol Med. 2015;12:328–41.

    PubMed  PubMed Central  Google Scholar 

  • Pekarik V, Gumulec J, Masarik M, Kizek R, Adam V. Prostate cancer, miRNAs, metallothioneins and resistance to cytostatic drugs. Curr Med Chem. 2013;20:534–44.

    CAS  PubMed  Google Scholar 

  • Prendecki M, Dorszewska J. The role of microRNA in the pathogenesis and diagnosis of neurodegenerative diseases. Austin Alzheimers J Parkinsons Dis. 2014;1:1–10.

    Google Scholar 

  • Varga ZV, Kupai K, Szűcs G, Gáspár R, Pálóczi J, Faragó N, Zvara A, Puskás LG, Rázga Z, Tiszlavicz L, Bencsik P, Görbe A, Csonka C, Ferdinandy P, Csont T. MicroRNA-25-dependent up-regulation of NADPH oxidase 4 (NOX4) mediates hypercholesterolemia-induced oxidative/nitrative stress and subsequent dysfunction in the heart. J Mol Cell Cardiol. 2013;62:111–21.

    Article  CAS  PubMed  Google Scholar 

  • Von-Dessauer B, Bongain J, Molina V, Quilodrán J, Castillo R, Rodrigo R. Oxidative stress as a novel target in pediatric sepsis management. J Crit Care. 2011;26:103.e1–7.

    Article  Google Scholar 

  • Wang Q, Wang Y, Minto AW, Wang J, Shi Q, Li X. MicroRNA-377 is up-regulated and can lead to increased fibronectin production in diabetic nephropathy. FASEB J. 2008;22:4126–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang Z, Ruan Z, Mao Y, Dong W, Zhang Y, Yin N, Jiang L. miR-27a is up regulated and promotes inflammatory response in sepsis. Cell Immunol. 2014;290:190–5.

    Article  CAS  PubMed  Google Scholar 

  • Yao L, Liu Z, Zhu J, Li B, Cha C, Tian Y. Clinical evaluation of circulating microRNA-25 level change in sepsis and its potential relationship with oxidative stress. Int J Clin Exp Pathol. 2015;8:7675–84.

    PubMed  PubMed Central  Google Scholar 

  • Yildirim SS, Akman D, Catalucci D, Turan B. Relationship between downregulation of miRNAs and increase of oxidative stress in the development of diabetic cardiac dysfunction: junctin as a target protein of mir-1. Cell Biochem Biophys. 2013;67:1397–408.

    Article  CAS  PubMed  Google Scholar 

  • Yu XY, Song YH, Geng YJ, Lin QX, Shan ZX, Lin SG. Glucose induces apoptosis of cardiomyocytes via microRNA-1 and IGF-1. Biochem Biophys Res Commun. 2008;376:548–52.

    Article  CAS  PubMed  Google Scholar 

  • Zhang B, Sun S, Shen L, Zu X. DNA methylation in the rat livers induced by low dosage isoniazid treatment. Environ Toxicol Pharmacol. 2011;32:486–90.

    Article  CAS  PubMed  Google Scholar 

  • Zhou J, Chaudhry H, Zhong Y, Ali MM, Perkins LA, Owens WB, Morales JE, McGuire FR, Zumbrun EE, Zhang J, Nagarkatti PS, Nagarkatti M. Dysregulation in microRNA expression in peripheral blood mononuclear cells of sepsis patients is associated with immunopathology. Cytokine. 2015;71:89–100.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgment

SK acknowledges Central University of Punjab, Bathinda, for providing necessary infrastructure facility and financial support in the form of Research Seed Money Grant GP:25. AKP also acknowledges SAP and DST-FIST facilities of the Biochemistry Department of the University of Allahabad, Allahabad, India.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abhay K. Pandey .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd.

About this chapter

Cite this chapter

Kumar, S., Pandey, A.K. (2017). Oxidative Stress-Related MicroRNAs as Diagnostic Markers: A Newer Insight in Diagnostics. In: Maurya, P., Chandra, P. (eds) Oxidative Stress: Diagnostic Methods and Applications in Medical Science. Springer, Singapore. https://doi.org/10.1007/978-981-10-4711-4_6

Download citation

Publish with us

Policies and ethics