Skip to main content

Hydroxamic Acids as Potent Antioxidants and Their Methods of Evaluation

  • Chapter
  • First Online:
Oxidative Stress: Diagnostic Methods and Applications in Medical Science

Abstract

Hydroxamic acids are a potent class of drugs that act epigenetically to control various pharmacological functions and are currently used for the treatment of various cancers. To better understand their function and role, one must first understand the difference between genetic and epigenetics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adcock IM, Ito K, Barnes PJ. Histone deacetylation: an important mechanism in inflammatory lung diseases. COPD: J Chron Obstruct Pulmon Dis. 2005;2:445–55.

    Article  Google Scholar 

  • Alam MN, Bristi NJ, Rafiquzzaman M. Review on in vivo and in vitro methods evaluation of antioxidant activity. Saudi Pharmaceut J. 2013;21:143–52.

    Article  Google Scholar 

  • Antolovich M, Prenzler PD, Patsalides E, McDonald S, Robards K. Methods for testing antioxidant activity. Analyst. 2002;127:183–98.

    Article  CAS  PubMed  Google Scholar 

  • Archin NM, Espeseth A, Parker D, Cheema M, Hazuda D, Margolis DM. Expression of latent HIV induced by the potent HDAC inhibitor suberoylanilide hydroxamic acid. AIDS Res Hum Retrovir. 2009;25:207–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Baltan S. Histone deacetylase inhibitors preserve function in aging axons. J Neurochem. 2012;123:108–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bertrand P. Inside HDAC with HDAC inhibitors. Eur J Med Chem. 2010;45:2095–116.

    Article  CAS  PubMed  Google Scholar 

  • Bird A. DNA methylation patterns and epigenetic memory. Genes Dev. 2002;16:6–21.

    Article  CAS  PubMed  Google Scholar 

  • Bolden JE, Peart MJ, Johnstone RW. Anticancer activities of histone deacetylase inhibitors. Nat Rev Drug Discov. 2006;5:769–84.

    Article  CAS  PubMed  Google Scholar 

  • Choi JH, Oh SW, Kang MS, Kwon H, Oh GT, Kim DY. Trichostatin a attenuates airway inflammation in mouse asthma model. Clin Exp Allergy. 2005;35:89–96.

    Article  CAS  PubMed  Google Scholar 

  • Choo Q-Y, Ho PC, Tanaka Y, Lin H-S. Histone deacetylase inhibitors MS-275 and SAHA induced growth arrest and suppressed lipopolysaccharide-stimulated NF-κB p65 nuclear accumulation in human rheumatoid arthritis synovial fibroblastic E11 cells. Rheumatology 2010; keq108.

    Google Scholar 

  • Deroanne CF, Bonjean K, Servotte S, Devy L, Colige A, Clausse N, Blacher S, Verdin E, Foidart JM, Nusgens BV, Castronovo V. Histone deacetylases inhibitors as anti-angiogenic agents altering vascular endothelial growth factor signaling. Oncogene. 2002;21:427–36.

    Article  CAS  PubMed  Google Scholar 

  • Dinarello CA. Anti-inflammatory agents: present and future. Cell. 2010;140:935–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dokmanovic M, Clarke C, Marks PA. Histone deacetylase inhibitors: overview and perspectives. Mol Cancer Res. 2007;5:981–9.

    Article  CAS  PubMed  Google Scholar 

  • Ganesan A, Nolan L, Crabb S, Packham G. Epigenetic therapy: histone acetylation, DNA methylation and anti-cancer drug discovery. Curr Cancer Drug Targets. 2009;9:963–81.

    Article  CAS  PubMed  Google Scholar 

  • Glauben R, Sonnenberg E, Zeitz M, Siegmund B. HDAC inhibitors in models of inflammation-related tumorigenesis. Cancer Lett. 2009;280:154–9.

    Article  CAS  PubMed  Google Scholar 

  • Huang Y, Huang F, Mehndiratta S, Lai S, Liou JP, Yang C. Anticancer activity of MPT0G157, a derivative of indolylbenzenesulfonamide, inhibits tumor growth and angiogenesis. Oncotarget. 2015;5:1–12.

    Google Scholar 

  • Jenuwein T, Allis CD. Translating the histone code. Science. 2001;293:1074–80.

    Article  CAS  PubMed  Google Scholar 

  • Joosten LA, Leoni F, Meghji S, Mascagni P. Inhibition of HDAC activity by ITF2357 ameliorates joint inflammation and prevents cartilage and bone destruction in experimental arthritis. Mol Med. 2011;17:391.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Joseph J, Mudduluru G, Antony S, Vashistha S, Ajitkumar P, Somasundaram K. Expression profiling of sodium butyrate (NaB)-treated cells: identification of regulation of genes related to cytokine signaling and cancer metastasis by NaB. Oncogene. 2004;23:6304–15.

    Article  CAS  PubMed  Google Scholar 

  • Laird PW. The power and the promise of DNA methylation markers. Nat Rev Cancer. 2003;3:253–66.

    Article  CAS  PubMed  Google Scholar 

  • Leder A, Orkin S, Leder P. Differentiation of erythroleukemic cells in the presence of inhibitors of DNA synthesis. Science. 1975;190:893–4.

    Article  CAS  PubMed  Google Scholar 

  • Leoni F, Zaliani A, Bertolini G, Porro G, Pagani P, Pozzi P, Donà G, Fossati G, Sozzani S, Azam T. The antitumor histone deacetylase inhibitor suberoylanilide hydroxamic acid exhibits antiinflammatory properties via suppression of cytokines. Proc Natl Acad Sci. 2002;99:2995–3000.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Leoni F, Fossati G, Lewis EC, Lee J-K, Porro G, Pagani P, Modena D, Moras ML, Pozzi P, Reznikov LL. The histone deacetylase inhibitor ITF2357 reduces production of pro-inflammatory cytokines in vitro and systemic inflammation in vivo. Mol Med. 2005;11:1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lin HS, Hu CY, Chan HY, Liew YY, Huang HP, Lepescheux L, Bastianelli E, Baron R, Rawadi G, Clément-Lacroix P. Anti-rheumatic activities of histone deacetylase (HDAC) inhibitors in vivo in collagen-induced arthritis in rodents. Br J Pharmacol. 2007;150:862–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu L-T, Chang H-C, Chiang L-C, Hung W-C. Histone deacetylase inhibitor up-regulates RECK to inhibit MMP-2 activation and cancer cell invasion. Cancer Res. 2003;63:3069–72.

    CAS  PubMed  Google Scholar 

  • Ma X, Ezzeldin H, Diasio R. Histone deacetylase inhibitors: current status and overview of recent clinical trials. (vol 69, pg 1911, 2009). Drugs 2009;69:2102–2102.

    Google Scholar 

  • Magner WJ, Kazim AL, Stewart C, Romano MA, Catalano G, Grande C, Keiser N, Santaniello F, Tomasi TB. Activation of MHC class I, II, and CD40 gene expression by histone deacetylase inhibitors. J Immunol. 2000a;165:7017–24.

    Article  CAS  PubMed  Google Scholar 

  • Magner WJ, Kazim AL, Stewart C, Romano MA, Catalano G, Grande C, Keiser N, Santaniello F, Tomasi TB. Activation of MHC class I, II, and CD40 gene expression by histone deacetylase inhibitors. J Immunol. 2000b;165:7017–24.

    Article  CAS  PubMed  Google Scholar 

  • Margueron R, Trojer P, Reinberg D. The key to development: interpreting the histone code? Curr Opin Genet Dev. 2005;15:163–76.

    Article  CAS  PubMed  Google Scholar 

  • Marks PA, Breslow R. Dimethyl sulfoxide to vorinostat: development of this histone deacetylase inhibitor as an anticancer drug. Nature Biotech. 2007;25:84–90.

    Article  CAS  Google Scholar 

  • Mazieres J, Tovar D, He B, Nieto-Acosta J, Marty-Detraves C, Clanet C, Pradines A, Jablons D, Favre G. Epigenetic regulation of RhoB loss of expression in lung cancer. BMC Cancer. 2007;7:220.

    Article  PubMed  PubMed Central  Google Scholar 

  • Mehndiratta S, Hsieh YL, Liu YM, Wang AW, Lee HY, Liang LY, Kumar S, Teng CM, Yang CR, Liou JP. Indole-3-ethylsulfamoylphenylacrylamides: potent histone deacetylase inhibitors with anti-inflammatory activity. Eur J Med Chem. 2014;85:468–79.

    Google Scholar 

  • Mehndiratta S, Pan SL, Kumar S, Liou JP. Indole-3-ethylsulfamoylphenylacrylamides with potent anti-proliferative and anti-angiogenic activities. Anti Cancer Agents Med Chem. 2016;16:907–13.

    Article  CAS  Google Scholar 

  • Mehndiratta S, Wang R-S, Huang H-L, Su CJ, Hsu CM, Wu YW, Pan SL, Liou JP. 4-Indolyl-N-hydroxyphenylacrylamides as potent HDAC class I and IIB inhibitors in vitro and in vivo. Eur J Med Chem. 2017;134:13–23.

    Google Scholar 

  • Michaelis M, Michaelis UR, Fleming I, Suhan T, Cinatl J, Blaheta RA, Hoffmann K, Kotchetkov R, Busse R, Nau H, Cinatl J Jr. Valproic acid inhibits angiogenesis in vitro and in vivo. Mol Pharmacol. 2004;65:520–7.

    Article  CAS  PubMed  Google Scholar 

  • Namdar M, Perez G, Ngo L, Marks PA. Selective inhibition of histone deacetylase 6 (HDAC6) induces DNA damage and sensitizes transformed cells to anticancer agents. Proc Natl Acad Sci. 2010;107:20003–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nasu Y, Nishida K, Miyazawa S, Komiyama T, Kadota Y, Abe N, Yoshida A, Hirohata S, Ohtsuka A, Ozaki T. Trichostatin A, a histone deacetylase inhibitor, suppresses synovial inflammation and subsequent cartilage destruction in a collagen antibody-induced arthritis mouse model. Osteoarthr Cartil. 2008;16:723–32.

    Article  CAS  PubMed  Google Scholar 

  • Pandolfi P. Histone deacetylases and transcriptional therapy with their inhibitors. Cancer Chemother Pharmacol. 2001;48:S17–9.

    Article  CAS  PubMed  Google Scholar 

  • Pasqualucci L, Bereschenko O, Niu H, Klein U, Basso K, Guglielmino R, Cattoretti G, Dalla-Favera R. Molecular pathogenesis of non-Hodgkin's lymphoma: the role of Bcl-6. Leuk Lymphoma. 2003;44:S5–S12.

    Article  CAS  PubMed  Google Scholar 

  • Reddy P, Maeda Y, Hotary K, Liu C, Reznikov LL, Dinarello CA, Ferrara JL. Histone deacetylase inhibitor suberoylanilide hydroxamic acid reduces acute graft-versus-host disease and preserves graft-versus-leukemia effect. Proc Natl Acad Sci U S A. 2004;101:3921–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Richon VM, Emiliani S, Verdin E, Webb Y, Breslow R, Rifkind RA, Marks PA. A class of hybrid polar inducers of transformed cell differentiation inhibits histone deacetylases. Proc Natl Acad Sci. 1998;95:3003–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Richon VM, Sandhoff TW, Rifkind RA, Marks PA. Histone deacetylase inhibitor selectively induces p21WAF1 expression and gene-associated histone acetylation. Proc Natl Acad Sci. 2000;97:10014–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ropero S, Esteller M. The role of histone deacetylases (HDACs) in human cancer. Mol Oncol. 2007;1:19–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rossig L, Li H, Fisslthaler B, Urbich C, Fleming I, Forstermann U, Zeiher AM, Dimmeler S. Inhibitors of histone deacetylation downregulate the expression of endothelial nitric oxide synthase and compromise endothelial cell function in vasorelaxation and angiogenesis. Circ Res. 2002;91:837–44.

    Article  PubMed  Google Scholar 

  • Routy J-P. Valproic acid: a potential role in treating latent HIV infection. Lancet. 2005;366:523–4.

    Article  PubMed  Google Scholar 

  • Saijo K, Katoh T, Shimodaira H, Oda A, Takahashi O, Ishioka C. Romidepsin (FK228) and its analogs directly inhibit phosphatidylinositol 3-kinase activity and potently induce apoptosis as histone deacetylase/phosphatidylinositol 3-kinase dual inhibitors. Cancer Sci. 2012;103:1994–2003.

    Article  CAS  PubMed  Google Scholar 

  • Santos-Rosa H, Caldas C. Chromatin modifier enzymes, the histone code and cancer. Eur J Cancer. 2005;41:2381–402.

    Article  CAS  PubMed  Google Scholar 

  • Shahidi F, Zhong Y. Measurement of antioxidant activity. J Funct Foods. 2015;18:757–81.

    Article  CAS  Google Scholar 

  • Song W, Tai Y, Tian Z, Hideshima T, Chauhan D, Nanjappa P, Exley M, Anderson K, Munshi N. HDAC inhibition by LBH589 affects the phenotype and function of human myeloid dendritic cells. Leukemia. 2011;25:161–8.

    Article  CAS  PubMed  Google Scholar 

  • Suzuki T, Kouketsu A, Matsuura A, Kohara A, Ninomiya S, Kohda K, Miyata N. Thiol-based SAHA analogues as potent histone deacetylase inhibitors. Bioorg Med Chem. 2004;14:3313–7.

    Article  CAS  Google Scholar 

  • Vaiserman AM, Pasyukova EG. Epigenetic drugs: a novel anti-aging strategy? Front Genet. 2012;3(224):1–3.

    Google Scholar 

  • Vaiserman AM, Kolyada AK, Koshel NM, Simonenko AV, Pasyukova EG. Effect of histone deacetylase inhibitor sodium butyrate on viability and lifespan in Drosophila melanogaster. Adv Gerontol. 2013;3:30–4.

    Article  Google Scholar 

  • Van Lint C, Emiliani S, Verdin E. The expression of a small fraction of cellular genes is changed in response to histone hyperacetylation. Gene Expr. 1996;5:245–54.

    PubMed  Google Scholar 

  • Wagner JM, Hackanson B, Lübbert M, Jung M. Histone deacetylase (HDAC) inhibitors in recent clinical trials for cancer therapy. Clin Epigenetics. 2010;1:117–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang L, de Zoeten EF, Greene MI, Hancock WW. Immunomodulatory effects of deacetylase inhibitors: therapeutic targeting of FOXP3+ regulatory T cells. Nat Rev Drug Discov. 2009;8:969–81.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wang C, Eessalu TE, Barth VN, Mitch CH, Wagner FF, Hong Y, Neelamegam R, Schroeder FA, Holson EB, Haggarty SJ, Hooker JM. Design, synthesis, and evaluation of hydroxamic acid-based molecular probes for in vivo imaging of histone deacetylase (HDAC) in brain. Am J Nucl Med Mol Imaging. 2013;15:29–38.

    Google Scholar 

  • Weichert W. HDAC expression and clinical prognosis in human malignancies. Cancer Lett. 2009;280:168–76.

    Article  CAS  PubMed  Google Scholar 

  • West AC, Johnstone RW. New and emerging HDAC inhibitors for cancer treatment. J Clin Invest. 2014;124:30–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Witt O, Deubzer HE, Milde T, Oehme I. HDAC family: what are the cancer relevant targets? Cancer Lett. 2009;277:8–21.

    Article  CAS  PubMed  Google Scholar 

  • Wikipedia. https://en.wikipedia.org/wiki/Histone_deacetylase

  • Yoo CB, Jones PA. Epigenetic therapy of cancer: past, present and future. Nat Rev Drug Discov. 2006;5:37–50.

    Article  CAS  PubMed  Google Scholar 

  • Zhang Z, Zhang Z, Schluesener H. MS-275, an histone deacetylase inhibitor, reduces the inflammatory reaction in rat experimental autoimmune neuritis. Neuroscience. 2010;169:370–7.

    Article  CAS  PubMed  Google Scholar 

  • Zhang Y, Yang P, Chou CJ, Liu C, Wang X, Xu W. Development of N-hydroxycinnamamide-based histone deacetylase inhibitors with an indole-containing cap group. ACS Med Chem Lett. 2013;4:235–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Samir Mehndiratta .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd.

About this chapter

Cite this chapter

Mehndiratta, S., Nepali, K., Satapathy, M.K. (2017). Hydroxamic Acids as Potent Antioxidants and Their Methods of Evaluation. In: Maurya, P., Chandra, P. (eds) Oxidative Stress: Diagnostic Methods and Applications in Medical Science. Springer, Singapore. https://doi.org/10.1007/978-981-10-4711-4_5

Download citation

Publish with us

Policies and ethics