Skip to main content

Abstract

Oxidative stress is proposed as leading event in the deterioration of health and basic biological processes. Ever since the Harman’s theory of aging was proposed based on the ill effects of oxidative in the body, the pace of oxidative stress research became rapid. The antioxidants were proposed as putative therapeutic and prophylactic agents for the prevention of oxidative damage and its aftermath. Despite the escalating research publications in the domain of oxidative stress and antioxidant therapy, apparent clinical transitions are fairly low. Perhaps, this should not be looked as question on the studies which were performed on the antioxidants, rather our poor understanding of cross talk of antioxidants and oxidants in the cells and its downstream effects. It seems that decision of considering antioxidants as miracle drugs for aging and similar condition was too early. There is lot more to be explored in this domain, and as we move deeper, we realize that oxidative stress and antioxidant interplay is one of the most complicated biological events that has several fold more complexity than basic cellular processes and metabolism. The scientific questions such as how much antioxidant dose is optimal and which antioxidant is most suitable can only be answered in a context-specific manner. The several anomalies and unfruitful clinical translations of antioxidants have led to the continuation and intensification of antioxidant research. With the advent of a new domain of science named nanotechnology, few exciting possibilities have emerged in the antioxidant researches which are likely to answer some of the issues of conventional antioxidants. This chapter is aimed to discuss the emerging trends in nano-antioxidants with a special focus on much-studied antioxidant nanoceria.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aldrich.com, S. http://www.sigmaaldrich.com/materials-science/nanomaterials/gold-nanoparticles.html. Accessed 17 July 2016.

  • Article S. A. http://www.nature.com/scientificamerican/journal/v308/n2/full/scientificamerican0213-62.html. Accessed 16 July 2016.

  • Arya A, Sethy NK, et al. Cerium oxide nanoparticles protect rodent lungs from hypobaric hypoxia-induced oxidative stress and inflammation. Int J Nanomedicine. 2013;8:4507–20.

    PubMed  PubMed Central  Google Scholar 

  • Arya A, Sethy NK, et al. Cerium oxide nanoparticles prevent apoptosis in primary cortical culture by stabilizing mitochondrial membrane potential. Free Radic Res. 2014;48(7):784–93.

    Article  CAS  PubMed  Google Scholar 

  • Arya A, Gangwar A, et al. Cerium oxide nanoparticles promote neurogenesis and abrogate hypoxia-induced memory impairment through AMPK-PKC-CBP signaling cascade. Int J Nanomedicine. 2016;11:1159–73.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Asati A, Santra S, et al. Oxidase-like activity of polymer-coated cerium oxide nanoparticles. Angew Chem Int Ed Engl. 2009;48(13):2308–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Azam S, Hadi N, et al. Prooxidant property of green tea polyphenols epicatechin and epigallocatechin-3-gallate: implications for anticancer properties. Toxicol In Vitro. 2004;18(5):555–61.

    Article  CAS  PubMed  Google Scholar 

  • Babior BM. NADPH oxidase: an update. Blood. 1999;93(5):1464–76.

    CAS  PubMed  Google Scholar 

  • Beal MF, Ferrante RJ, et al. Increased 3-nitrotyrosine in both sporadic and familial amyotrophic lateral sclerosis. Ann Neurol. 1997;42(4):644–54.

    Article  CAS  PubMed  Google Scholar 

  • Bouayed J, Bohn T. Exogenous antioxidants–double-edged swords in cellular redox state: health beneficial effects at physiologic doses versus deleterious effects at high doses. Oxidative Med Cell Longev. 2010;3(4):228–37.

    Article  Google Scholar 

  • Cadenas E, Davies KJ. Mitochondrial free radical generation, oxidative stress, and aging. Free Radic Biol Med. 2000;29(3–4):222–30.

    Article  CAS  PubMed  Google Scholar 

  • Cameron E, Pauling L. Supplemental ascorbate in the supportive treatment of cancer: prolongation of survival times in terminal human cancer. Proc Natl Acad Sci U S A. 1976;73(10):3685–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Campbell CT, Peden CH. Chemistry. Oxygen vacancies and catalysis on ceria surfaces. Science. 2005;309(5735):713–4.

    Article  CAS  PubMed  Google Scholar 

  • Catoni C, Peters A, et al. Life history trade-offs are influenced by the diversity, availability and interactions of dietary antioxidants. Anim Behav. 2008;76:12.

    Article  Google Scholar 

  • Chen J, Patil S, et al. Rare earth nanoparticles prevent retinal degeneration induced by intracellular peroxides. Nat Nanotechnol. 2006;1(2):142–50.

    Article  CAS  PubMed  Google Scholar 

  • Chen S, Hou Y, et al. Cerium oxide nanoparticles protect endothelial cells from apoptosis induced by oxidative stress. Biol Trace Elem Res. 2013;154(1):156–66.

    Article  CAS  PubMed  Google Scholar 

  • Clark AJ, et al. Calicum microdomains form within neutrophils at the neutrophil-tumor cell synapse: role in antibody-dependent target cell apoptosis. Cancer Immunol Immunother. 2010;59(1):149–59.

    Google Scholar 

  • Colon J, et al. Protection from radiation-induced pneumonitis using cerium oxide nanoparticles. Nanomedicine. 2009;5(2):225–31.

    Google Scholar 

  • Dalle-Donne I, Giustarini D, et al. Protein carbonylation in human diseases. Trends Mol Med. 2003;9(4):169–76.

    Article  CAS  PubMed  Google Scholar 

  • Das S, Chigurupati S, et al. Therapeutic potential of nanoceria in regenerative medicine. MRS Bull. 2014;39(11):8.

    Article  Google Scholar 

  • De Minicis S, Brenner DA. NOX in liver fibrosis. Arch Biochem Biophys. 2007;462(2):266–72.

    Article  PubMed  PubMed Central  Google Scholar 

  • Decker EA. Phenolics: prooxidants or antioxidants? Nutr Rev. 1997;55(11 Pt 1):396–8.

    CAS  PubMed  Google Scholar 

  • Deshpande S, Patil S, et al. Size dependency variation in lattice parameter and valency states in nanocrystalline cerium oxide. Appl Phys Lett. 2005;87(13):3.

    Article  Google Scholar 

  • Dowding JM, Dosani T, et al. Cerium oxide nanoparticles scavenge nitric oxide radical ( NO). Chem Commun (Camb). 2012;48(40):4896–8.

    Article  CAS  Google Scholar 

  • Esch F, Fabris S, et al. Electron localization determines defect formation on ceria substrates. Science. 2005;309(5735):752–5.

    Article  CAS  PubMed  Google Scholar 

  • Estevez AY, Erlichman JS. The potential of cerium oxide nanoparticles (nanoceria) for neurodegenerative disease therapy. Nanomedicine (Lond). 2014;9(10):1437–40.

    Article  CAS  Google Scholar 

  • Figueroa, M.. http://tt.research.ucf.edu/. Accessed 4 Mar 2014.

  • Galati G, O’Brien PJ. Potential toxicity of flavonoids and other dietary phenolics: significance for their chemopreventive and anticancer properties. Free Radic Biol Med. 2004;37(3):287–303.

    Article  CAS  PubMed  Google Scholar 

  • Halliwell B. Reactive species and antioxidants. Redox biology is a fundamental theme of aerobic life. Plant Physiol. 2006;141(2):312–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hayat A, Andreescu D, et al. Redox reactivity of cerium oxide nanoparticles against dopamine. J Colloid Interface Sci. 2014;418:240–5.

    Article  CAS  PubMed  Google Scholar 

  • Heckert EG, Karakoti AS, et al. The role of cerium redox state in the SOD mimetic activity of nanoceria. Biomaterials. 2008;29(18):2705–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Heckman KL, DeCoteau W, et al. Custom cerium oxide nanoparticles protect against a free radical mediated autoimmune degenerative disease in the brain. ACS Nano. 2013;7(12):10582–96.

    Article  CAS  PubMed  Google Scholar 

  • Hirst SM, et al. Anti-inflammatory properties of cerium oxide nanoparticles. Small. 2009;5(24):2848–56.

    Google Scholar 

  • Hirst SM, Karakoti A, et al. Bio-distribution and in vivo antioxidant effects of cerium oxide nanoparticles in mice. Environ Toxicol. 2011;28(2):107–18.

    Article  PubMed  Google Scholar 

  • Hirst SM, Karakoti A, et al. Bio-distribution and in vivo antioxidant effects of cerium oxide nanoparticles in mice. Environ Toxicol. 2013;28(2):107–18.

    Article  CAS  PubMed  Google Scholar 

  • Hussain S, Al-Nsour F, et al. Cerium dioxide nanoparticles do not modulate the lipopolysaccharide-induced inflammatory response in human monocytes. Int J Nanomedicine. 2012;7:1387–97.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kalyanaraman B. Teaching the basics of redox biology to medical and graduate students: oxidants, antioxidants and disease mechanisms. Redox Biol. 2013;1(1):244–57.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Karakoti AS, Monteiro-Riviere NA, et al. Nanoceria as antioxidant: synthesis and biomedical applications. JOM (1989). 2008;60(3):33–7.

    Article  CAS  Google Scholar 

  • Kohen R, Nyska A. Oxidation of biological systems: oxidative stress phenomena, antioxidants, redox reactions, and methods for their quantification. Toxicol Pathol. 2002;30(6):620–50.

    Article  CAS  PubMed  Google Scholar 

  • Lambeth JD. Nox enzymes, ROS, and chronic disease: an example of antagonistic pleiotropy. Free Radic Biol Med. 2007;43(3):332–47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mehlhorn I, et al. High-level expression and characterization of a purified 142-residue polypeptide of the prion protein. Biochemistry. 1996;35(17):5528–37.

    Google Scholar 

  • Molina RM, Konduru NV, et al. Bioavailability, distribution and clearance of tracheally instilled, gavaged or injected cerium dioxide nanoparticles and ionic cerium. Environ Sci Nano. 2014;1:13.

    Article  Google Scholar 

  • Niu J, Azfer A, et al. Cardioprotective effects of cerium oxide nanoparticles in a transgenic murine model of cardiomyopathy. Cardiovasc Res. 2007;73(3):549–59.

    Article  CAS  PubMed  Google Scholar 

  • Novo E, Parola M. Redox mechanisms in hepatic chronic wound healing and fibrogenesis. Fibrogenesis Tissue Repair. 2008;1(1):5.

    Article  PubMed  PubMed Central  Google Scholar 

  • Pagliari F, et al. Cerium oxide nanoparticles protect cardiac progenitor cells from oxidative stress. ACS Nano. 2012;6(5):3767–75.

    Google Scholar 

  • Palozza P, Serini S, et al. Regulation of cell cycle progression and apoptosis by beta-carotene in undifferentiated and differentiated HL-60 leukemia cells: possible involvement of a redox mechanism. Int J Cancer. 2002;97(5):593–600.

    Article  CAS  PubMed  Google Scholar 

  • Pirmohamed T, Dowding JM, et al. Nanoceria exhibit redox state-dependent catalase mimetic activity. Chem Commun (Camb). 2010;46(16):2736–8.

    Article  CAS  Google Scholar 

  • Prior RL, Cao G. In vivo total antioxidant capacity: comparison of different analytical methods. Free Radic Biol Med. 1999;27(11–12):1173–81.

    Article  CAS  PubMed  Google Scholar 

  • Pritsos CA. Cellular distribution, metabolism and regulation of the xanthine oxidoreductase enzyme system. Chem Biol Interact. 2000;129(1–2):195–208.

    Article  CAS  PubMed  Google Scholar 

  • Radimer KL, Ballard-Barbash R, et al. Weight change and the risk of late-onset breast cancer in the original Framingham cohort. Nutr Cancer. 2004;49(1):7–13.

    Article  PubMed  Google Scholar 

  • Reed K, Cormack CM, et al. Exploring the properties and applications of nancoeria: is there plenty of room at the bottom? Environ Sci Nano. 2014;1(1):14.

    Google Scholar 

  • Rhee SG, Chae HZ, et al. Peroxiredoxins: a historical overview and speculative preview of novel mechanisms and emerging concepts in cell signaling. Free Radic Biol Med. 2005;38(12):1543–52.

    Article  CAS  PubMed  Google Scholar 

  • Rojkind M, Dominguez-Rosales JA, et al. Role of hydrogen peroxide and oxidative stress in healing responses. Cell Mol Life Sci. 2002;59(11):1872–91.

    Article  CAS  PubMed  Google Scholar 

  • Schubert W, et al. Analyzing proteome topology and function by automated multidimensional fluorescence microscopy. Nat Biotechnol. 2006;24(10):1270–8.

    Google Scholar 

  • Soberman RJ. The expanding network of redox signaling: new observations, complexities, and perspectives. J Clin Invest. 2003;111(5):571–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Suzanne M, Steller H. Letting go: modification of cell adhesion during apoptosis. J Biol. 2009;8(5):49.

    Article  PubMed  PubMed Central  Google Scholar 

  • Tarnuzzer RW, et al. Vacancy engineered ceria nanostructures for protection from radiation-induced cellular damage. Nano Lett. 2005;5(12):2573–7.

    Google Scholar 

  • Tseng MT, et al. Persistent hepatic structural alterations following nanoceria vascular infusion in the rat. Toxicol Pathol. 2014;42(6):984–96.

    Google Scholar 

  • Ujjain SK, Das A, et al. Nanoceria based electrochemical sensor for hydrogen peroxide detection. Biointerphases. 2014;9(3):031011.

    Article  PubMed  Google Scholar 

  • Vasquez-Vivar J, Kalyanaraman B. Generation of superoxide from nitric oxide synthase. FEBS Lett. 2000;481(3):305–6.

    Article  CAS  PubMed  Google Scholar 

  • Vignais PV. The superoxide-generating NADPH oxidase: structural aspects and activation mechanism. Cell Mol Life Sci. 2002;59(9):1428–59.

    Article  CAS  PubMed  Google Scholar 

  • Wason MS, Colon J, et al. Sensitization of pancreatic cancer cells to radiation by cerium oxide nanoparticle-induced ROS production. Nanomedicine. 2013;9(4):558–69.

    Article  CAS  PubMed  Google Scholar 

  • Willett WC, MacMahon B. Diet and cancer–an overview (second of two parts). N Engl J Med. 1984;310(11):697–703.

    Article  CAS  PubMed  Google Scholar 

  • Williams RJ, Spencer JP, et al. Flavonoids: antioxidants or signalling molecules? Free Radic Biol Med. 2004;36(7):838–49.

    Article  CAS  PubMed  Google Scholar 

  • Winterbourn CC. Reconciling the chemistry and biology of reactive oxygen species. Nat Chem Biol. 2008;4(5):278–86.

    Article  CAS  PubMed  Google Scholar 

  • Yeh SL, Wang HM, et al. Interactions of beta-carotene and flavonoids on the secretion of pro-inflammatory mediators in an in vitro system. Chem Biol Interact. 2009;179(2–3):386–93.

    Article  CAS  PubMed  Google Scholar 

  • Yokel RA, Au TC, et al. Distribution, elimination, and biopersistence to 90 days of a systemically introduced 30 nm ceria-engineered nanomaterial in rats. Toxicol Sci. 2012;127(1):256–68.

    Article  CAS  PubMed  Google Scholar 

  • Yokel RA, Tseng MT, et al. Biodistribution and biopersistence of ceria engineered nanomaterials: size dependence. Nanomedicine. 2013;9(3):398–407.

    Article  CAS  PubMed  Google Scholar 

  • Yokel RA, Hussain S, et al. The yin: an adverse health perspective of nanoceria: uptake, distribution, accumulation, and mechanisms of its toxicity. Environ Sci Nano. 2014;1(5):406–28.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Narendra Kumar Sharma .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd.

About this chapter

Cite this chapter

Arya, A., Gangwar, A., Sharma, N.K. (2017). Nanomaterials in Antioxidant Research. In: Maurya, P., Chandra, P. (eds) Oxidative Stress: Diagnostic Methods and Applications in Medical Science. Springer, Singapore. https://doi.org/10.1007/978-981-10-4711-4_3

Download citation

Publish with us

Policies and ethics