Skip to main content

Materials for Tissue Engineering

  • Chapter
  • First Online:
Advances in Animal Biotechnology and its Applications

Abstract

Tissue engineering is an emerging multidisciplinary field where hard tissue failure is cured or replaced by implanting natural, synthetic, or semisynthetic tissues. The need of organ transplantation can be minimized by the application of engineered tissue. The injured tissues and organs are replaced by artificial scaffolds made of polymer, metals, and ceramics. All the materials have different mechanical and biological properties. The engineered biomaterials play pivotal role in the regeneration and restoration of damaged and failure tissues. The key focus of tissue building is to maintain a strategic distance from issues by making natural substitutes equipped for supplanting the harmed tissue. In this review paper, we discussed about the different materials used as scaffold/graft for hard tissue engineering.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adams JE, Zobitz ME, Lewallen DG et al (2005) Canine carpal joint fusion: a model for four-corner arthrodesis using a porous tantalum implant. J Hand Surg Am 30(6):1128–1135

    Article  PubMed  Google Scholar 

  • Ahmed TAE, Dare EV, Hincke X, Al AET (2008) Fibrin: a versatile scaffold for tissue engineering applications. Tissue Eng 14(2):199–215

    Article  CAS  Google Scholar 

  • Albanna MZ, Bou-akl TH, Blowytsky O et al (2013) Chitosan fibers with improved biological and mechanical properties for tissue engineering applications. J Mech Behav Biomed Mater 20:217–226

    Article  CAS  PubMed  Google Scholar 

  • Al-khateeb KAS, Mustafa AA, Faris A, Sutjipto A (2012) Use of porous alumina bioceramic to increase implant osseointegration to surrounding bone. Adv Mater Res 445:554–559

    Article  CAS  Google Scholar 

  • Amanda BL, Kibret M (2014) Biodegradable polyphosphazene biomaterials for tissue engineering and delivery of therapeutics. Bio Med Res Int. https://doi.org/10.1155/2014/761373

  • Ambrosio AMA, Allcock HR, Katti DS, Laurencin CT (2002) Degradable polyphosphazene/poly (a -hydroxyester) blends: degradation studies. Biomaterials 23:1667–1672

    Article  CAS  PubMed  Google Scholar 

  • Apelt D, Theiss F, EI-Warrak AO, Zlinszky K, Bettschart-Wolfisberger R et al (2004) In vivo behavior of three different injectable hydraulic calcium phosphate cements. Biomaterials 25:1439–1451

    Article  CAS  PubMed  Google Scholar 

  • Armitage DA, Parker TL, Grant DM (2002) Biocompatibility and hemocompatibility of surface-modified NiTi alloys. J Biomed Mater Res A 66(1):129–137

    Article  Google Scholar 

  • Bobyn JD, Stackpool GJ, Hacking HA et al (1999) Characteristics of bone ingrowth and interface mechanics of a new porous. J Bone Joint Surg Br 81(5):907–914

    Article  CAS  PubMed  Google Scholar 

  • Brien FJO (2011) Biomaterials & scaffolds for tissue engineering. Mater Today 14(3):88–95

    Article  CAS  Google Scholar 

  • Bueno EM, Glowacki J (2009) Cell-free and cell-based approaches for bone regenration. Nat Rev Rheumatol 5(12):685–697

    Article  PubMed  Google Scholar 

  • Cama G, Barberis F, Botter R, Cirillo P, Capurro M et al (2009) Preparation and properties of macroporous brushite bone cements. Acta Biomater 5:2161–2168

    Article  CAS  PubMed  Google Scholar 

  • Conconi MT, Lora S, Baiguera S, Boscolo E et al (2004) In vitro culture of rat neuromicrovascular endothelial cells on polymeric scaffolds. J Biomed Mater Res A 71(4):669–674

    Article  CAS  PubMed  Google Scholar 

  • Davies JE (2007) Bone bonding at natural and biomaterial surfaces. Biomaterials 28(34):5058–5067

    Article  CAS  PubMed  Google Scholar 

  • Dhandayuthapani B, Yoshida Y, Maekawa T, Kumar DS (2011) Polymeric scaffolds in tissue engineering application: a review. Int J Poly Sci:1–19

    Article  Google Scholar 

  • Engin NO, Tas AC (1999) Manufacture of macroporous calcium hydroxyapatite bioceramics. J Eur Ceram Soc 19(13–14):2569–2572

    Article  CAS  Google Scholar 

  • Erbel R, Di Mario C, Bartunek J, Bonnier J et al (2007) Temporary scaff olding of coronary arteries with bioabsorbable magnesium stents: a prospective, non-randomised multicentre trial. Lancet 369:1869–1875

    Article  CAS  PubMed  Google Scholar 

  • Farooq I, Imran Z, Farooq U et al (2012) Bioactive glass: a material for the future. World J Dent 3(2):199–201

    Article  Google Scholar 

  • Gao JIN, Ph D, Crapo PM et al (2006) Macroporous elastomeric scaffolds with extensive micropores for soft tissue engineering. Tissue Eng 12(4):917–925

    Article  CAS  PubMed  Google Scholar 

  • Giannoudis PV, Dinopoulos H, Tsiridis E (2005) Bone substitutes: an update. Injury 36(3):S20–S27

    Article  PubMed  Google Scholar 

  • Gooptu B, Lomas DA (2008) Polymers and inflammation: disease mechanisms of the serpinopathies. J Exp Med 205:1529–1534

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Greiner C, Oppenheimer SM, Dunand DC (2005) High strength, low stiffness, porous NiTi with superelastic properties. Acta Biomater 1:705–716

    Article  PubMed  Google Scholar 

  • Guo B, Lei B, Peng L, Ma PX (2015) Functionalized scaffolds to enhance tissue regeneration. Regen Biomater 2(1):47–57

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hench LL (1993) Bioceramics: from concept to clinic. Am Ceram Soc Bull 72:93–98

    CAS  Google Scholar 

  • Hentrich RL Jr, Graves GA Jr, Stein HG, Bajpai PK (1971) Evaluation of inert and resorbable ceramics for future clinical orthopedic applications. J Biomed Mater Res 5(1):25–51

    Article  CAS  PubMed  Google Scholar 

  • Heublein B, Rohde, Kaese V et al (2003) Biocorrosion of magnesium alloys: a new principle in cardiovascular implant technology ? Heart 89(6):651–656

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hong Z, Reis RL, Mano JF (2008) Preparation and in vitro characterization of novel bioactive glass ceramic nanoparticles. J Biomed Mater Res A 88(2):304–313

    Article  Google Scholar 

  • Hutmacher D, Hurzeler MB, Schliephake H (1996) A review of material properties of biodegradable and bioresorbable polymers and devices for GTR and GBR applications. Int J Oral Maxillofac Implants 11:667–678

    PubMed  CAS  Google Scholar 

  • Kokubo T, Takadama H (2006) How useful is SBF in predicting in vivo bone bioactivity? Biomaterials 27(15):2907–2915

    Article  CAS  PubMed  Google Scholar 

  • Laurencin CT, El-Amin SF, Ibim SE, Willoughby DA, Attawia M et al (1996) A highly porous 3-dimensional polyphosphazene polymer matrix for skeletal tissue regeneration. J Biomed Mater Res 30(2):133–138

    Article  CAS  PubMed  Google Scholar 

  • Laurencin CT, Ambrosio AM, Sahota JS (2003) Novel polyphosphazene-hydroxyapatite composites as biomaterials. IEEE Eng Med Biol Mag 22:18–26

    Article  PubMed  Google Scholar 

  • Lin F, Yan C, Fan W et al (2010) Preparation of mesoporous bioglass coated zirconia scaffold for bone tissue engineering. Adv Mater Res 365:209–215

    Article  CAS  Google Scholar 

  • Liu X, Ma MX (2004) Polymeric scaffolds for bone tissue engineering. Ann Biomed Eng 32:477–486

    Article  PubMed  Google Scholar 

  • Liu C, Xia Z, Czernuszka JT (2007) Design and development of three-dimensional scaffolds for tissue engineering. Chem Eng Res Des 85(7):1051–1064

    Article  CAS  Google Scholar 

  • Lu JX, About I, Stephan G, van Landuyt P, Dejou J et al (1999) Histological and biomechanical studies of two bone colonizable cements in rabbits. Bone 25:41S–45S

    Article  CAS  PubMed  Google Scholar 

  • Luz GM, Mano JF (2011) Preparation and characterization of bioactive glass nanoparticles prepared by sol–gel for biomedical applications. Nanotechnology 22(49):494014. https://doi.org/10.1088/0957-4484/22/49/494014

    Article  PubMed  CAS  Google Scholar 

  • Ma PX (2004) Scaffolds for tissue fabrication. Mater Today 7:30–40

    Article  CAS  Google Scholar 

  • Madihally SV, Matthew HWT (1999) Porous chitosan scaffolds for tissue engineering. Biomaterials 20:1133–1142

    Article  CAS  PubMed  Google Scholar 

  • Michiardi A, Aparicio C, Planell JA, Gil EJ (2006) New oxidation treatment of NiTi shape memory alloys to obtain Ni-free surfaces and to improve biocompatibility. J Biomed Mater Res B 77(2):249–256

    Article  CAS  Google Scholar 

  • Naughton GK, Tolbert WR, Grillot TM (1995) Emerging developments in tissue engineering and cell technology. Tissue Eng 1:211–219

    Article  CAS  PubMed  Google Scholar 

  • Okazaki Y (2001) A new Ti – 15Zr – 4Nb – 4Ta alloy for medical applications. Curr Opinion Solid State Mater Sci 5:45–53

    Article  CAS  Google Scholar 

  • Park JB, Lakes RS (1992) Biomaterials – an introduction, 2nd edn. Plenum Press, New York

    Google Scholar 

  • Payne RG, Mcgonigle JS, Yaszemski MJ, Yasko AW et al (2002) Development of an injectable, in situ crosslinkable, degradable polymeric carrier for osteogenic cell populations. Part 3. Proliferation and differentiation of encapsulated marrow stromal osteoblasts cultured on crosslinking poly(propylene fumarate). Biomaterials 23:4381–4387

    Article  CAS  PubMed  Google Scholar 

  • Pilliar RM (2009) Metallic biomaterials. In: Narayan R (ed) Biomedical materials. Springer, New York, pp 41–81

    Chapter  Google Scholar 

  • Prymak O, Bogdanski D, Ko M, Esenwein SA et al (2005) Morphological characterization and in vitro biocompatibility of a porous nickel – titanium alloy. Biomaterials 26(29):5801–5807

    Article  CAS  PubMed  Google Scholar 

  • Puoci F (2015) Advanced polymers in medicine. Springer, Berlin

    Book  Google Scholar 

  • Rai R, Tallawi M, Grigore A, Boccaccini AR (2012) Progress in polymer science synthesis, properties and biomedical applications of poly(glycerol sebacate) (PGS): a review. Prog Polym Sci 37(8):1051–1078

    Article  CAS  Google Scholar 

  • Rezwan K, Chen QZ, Blaker JJ, Boccaccini AR (2006) Biodegradable and bioactive porous polymer/inorganic composite scaffolds for bone tissue engineering. Biomaterials 27(18):3413–3431

    Article  CAS  PubMed  Google Scholar 

  • Sachlos E, Czernuszka J (2003) Making tissue engineering scaffolds work. Review: the application of solid freeform fabrication technology to the production of tissue engineering scaffolds. Eur Cell Mater 5:39–40

    Google Scholar 

  • Salgado J, Coutinho OP, Reis RL (2004) Bone tissue engineering: state of the art and future trends. Macromol Biosci 4(8):743–765

    Article  CAS  PubMed  Google Scholar 

  • Sheikh Z, Sima C, Glogauer M (2015) Bone replacement materials and techniques used for achieving vertical alveolar bone augmentation. Materials 8:2953–2993

    Article  CAS  PubMed Central  Google Scholar 

  • Siraparapu YD, Bassa S, Sanasi PD (2013) A review on recent applications of biomaterials. Intl J Sci Res 1:70–75

    Google Scholar 

  • Staiger MP, Pietak AM, Huadmai J, Dias G (2006) Magnesium and its alloys as orthopedic biomaterials: a review. Biomaterials 27(9):1728–1734

    Article  CAS  PubMed  Google Scholar 

  • Tarnita D, Tarnita DN, Bizdoaca et al (2009) Properties and medical applications of shape memory alloys. Romanian J Morphol Embryol 50(1):15–21

    Google Scholar 

  • Temeno JS, Mikos AG (2000) Injectable biodegradable materials for orthopedic tissue engineering. Biomaterials 21:2405–2412

    Article  Google Scholar 

  • Thamaraiselvi TV, Rajeshwari S (2004) Biological evaluation of bioceramic materials – a review. Trends Biometer Artif Organs 18(1):9–17

    Google Scholar 

  • Vainionpaa S, Kilpikari J, Laiho J, Helevirta P et al (1987) Strength and strength retention vitro, of absorbable, self-reinforced polyglycolide (PGA) rods for fracture fixation. Biomaterials 8:46–48

    Article  CAS  PubMed  Google Scholar 

  • Vert M, Li SM, Guerin P et al (1992) Macromoleculaires, bioresorbability and biocompatibility of aliphatic polyesters. J Mater Sci Mater Med 3(6):432–446

    Article  CAS  Google Scholar 

  • Wang Y, Ameer GA, Sheppard BJ, Langer R (2002) A tough biodegradable elastomer. Nat Biotechnol 20(6):602–606

    Article  CAS  PubMed  Google Scholar 

  • West J, Hubbell J (1986) Bioactive polymers, synthetic biodegradable polymer scaffolds. Chapter 5. In: Bioactive polymers. Springer, New York

    Google Scholar 

  • Yang C, Hillas PJ, Julio AB et al (2004) The application of recombinant human collagen in tissue engineering. BioDrugs 18(2):103–119

    Article  CAS  PubMed  Google Scholar 

  • Yaszemski MJ, Payne RG, Hayes WC et al (1995) The ingrowth of new bone tissue and initial mechanical properties of a degrading polymeric composite scaffold. Tissue Eng 1(1):41–52

    Article  CAS  PubMed  Google Scholar 

  • Zohora FT, Yousuf A, Anwarul M (2014) Biomaterials as porous scaffolds for tissue engineering applications: a review. European Sci J 10(21):186–209

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kumar, P., Sindhu, A. (2018). Materials for Tissue Engineering. In: Gahlawat, S., Duhan, J., Salar, R., Siwach, P., Kumar, S., Kaur, P. (eds) Advances in Animal Biotechnology and its Applications. Springer, Singapore. https://doi.org/10.1007/978-981-10-4702-2_20

Download citation

Publish with us

Policies and ethics