Skip to main content

Molecular Approaches for Identification of Lactobacilli from Traditional Dairy Products

  • Chapter
  • First Online:
Advances in Animal Biotechnology and its Applications

Abstract

Traditional dairy food products harbour groups of several bacterial genera especially lactic acid bacteria (LAB) which play a role essentially in fermentation of these products and provide a unique flavour and identity to the product. Historically, many species of LAB have been considered as ‘generally regarded as safe’ (GRAS) bacteria and are associated with human foods. The GRAS status forms a base for increasing use of LAB in traditional foods and in expanding unique foods and food products that are formulated to have specific nutritional or additional health-enhancing benefits. Lactobacillus is considered as one of the most important genera among LAB. The genera have more than 180 species. Classical microbiological methods have been found insufficient to classify this huge diverse genus. Hence, a better approach is in demand to characterize new strains of lactobacilli. By using modern molecular methods, it has been possible to characterize the lactobacillus associated with traditional dairy products.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Acinas SG, Marcelino LA, Klepac-Ceraj V, Polz MF (2004) Divergence and redundancy of 16S rRNA sequences in genomes with multiple rrn operons. J Bacteriol 186:2629–2635

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Almeida CC, Lorena SLS, Pavan CR, Akasaka HMI, Mesquita MA (2012) Beneficial effects of long-term consumption of a probiotic combination of Lactobacillus casei Shirota and Bifidobacterium breve Yakult may persist after suspension of therapy in lactose-intolerant patients. Nutr Clin Pract 27:247–251

    Article  PubMed  Google Scholar 

  • Axelsson L, Ahrné S (2000) Lactic acid bacteria. Appl microbial systematics: Springer, The Netherlands, pp 367–388

    Google Scholar 

  • Babalola OO (2004) Molecular techniques: an overview of methods for the detection of bacteria. Afri J Biotech 2:710–713

    Google Scholar 

  • Baldauf SL, Palmer JD, Doolittle WF (1996) The root of the universal tree and the origin of eukaryotes based on elongation factor phylogeny. Proc Natl Acad Sci 93:7749–7754

    Article  CAS  PubMed  Google Scholar 

  • Beresford TP, Fitzsimons NA, Brennan NL, Cogan TM (2001) Recent advances in cheese microbiology. Int Dairy J 11:259–274

    Article  CAS  Google Scholar 

  • Bianchi-Salvadori B, Cocconcelli PS, Fernandes I, Gomezr J, Gomez R et al (1997) Characterization of the lactic acid bacteria in artisanal dairy products. J Dairy Res 64:409–421

    Article  Google Scholar 

  • Björkroth J, Ridell J, Korkeala H (1996) Characterization of Lactobacillus sake strains associating with production of ropy slime by randomly amplified polymorphic DNA (RAPD) and pulsed-field gel electrophoresis (PFGE) patterns. Int J Food Microbiol 31:59–68

    Article  PubMed  Google Scholar 

  • Blears MJ, De Grandis SA, Lee H, Trevors JT (1998) Amplified fragment length polymorphism (AFLP): a review of the procedure and its applications. J Industria Microbiol Biotechn 21:99–114

    Article  CAS  Google Scholar 

  • Brisse S, Verhoef J (2001) Phylogenetic diversity of Klebsiella pneumoniae and Klebsiella oxytoca clinical isolates revealed by randomly amplified polymorphic DNA, gyrA and parC genes sequencing and automated ribotyping. Int J Syst Evol Microbiol 51:915–924

    Article  CAS  PubMed  Google Scholar 

  • Chandan RC (2011) Dairy ingredients for food processing: an overview. Wiley Online Library

    Chapter  Google Scholar 

  • Charteris WP, Kelly PM, Morelli L, Collins JK (1998) Development and application of an in vitro methodology to determine the transit tolerance of potentially probiotic Lactobacillus and Bifidobacterium species in the upper human gastrointestinal tract. J Appl Microbiol 84:759–768

    Article  CAS  PubMed  Google Scholar 

  • Clayton RA, Sutton G, Hinkle PS, Bult C, Fields C (1995) Intraspecific variation in small-subunit rRNA sequences in GenBank: why single sequences may not adequately represent prokaryotic taxa. Int J Syst Bacteriol 45:595–599

    Article  CAS  PubMed  Google Scholar 

  • Coeuret V, Dubernet S, Bernardeau M, Gueguen M, Vernoux JP (2003) Isolation, characterisation and identification of Lactobacilli focusing mainly on cheeses and other dairy products. Lait 83:269–306

    Article  CAS  Google Scholar 

  • Corroler D, Mangin I, Desmasures N, Gueguen M (1998) An ecological study of lactococci isolated from raw milk in the Camembert cheese registered designation of origin area. Appl Environ Microbiol 64:4729–4735

    PubMed  PubMed Central  CAS  Google Scholar 

  • Daud Khaled AK, Neilan BA, Henriksson A, Conway PL (1997) Identification and phylogenetic analysis of Lactobacillus using multiplex RAPD-PCR. FEMS Microbiol Lett 153:191–197

    Article  CAS  PubMed  Google Scholar 

  • De Gheldre Y, Vandamme P, Goossens H, Struelens MJ (1999) Identification of clinically relevant viridans streptococci by analysis of transfer DNA intergenic spacer length polymorphism. Int J Syst Evol Microbiol 49:1591–1598

    Google Scholar 

  • Dellaglio F, Torriani S, Felis GE (2004) Reclassification of Lactobacillus cellobiosus Rogosa et al. 1953 as a later synonym of Lactobacillus fermentum Beijerinck 1901. Int J Syst Evol Microbiol 54:809–812

    Article  CAS  PubMed  Google Scholar 

  • Dong YP, Cui SH, Yu HX, Li FQ (2011) Development of pulsed field gel electrophoresis and application for characterization and identification of Lactobacillus and Streptococcus thermophilus. Chi J Prev Med 45:1086

    CAS  Google Scholar 

  • Drancourt M, Raoult D (2005) Sequence-based identification of new bacteria: a proposition for creation of an orphan bacterium repository. J Clin Microbiol 43:4311–4315

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Du Plessis EM, Dicks LMT (1995) Evaluation of random amplified polymorphic DNA (RAPD)-PCR as a method to differentiate Lactobacillus acidophilus, Lactobacillus crispatus, Lactobacillus amylovorus, Lactobacillus gallinarum, Lactobacillus gasseri, and Lactobacillus johnsonii. Curr Microbiol 31:114–118

    Article  PubMed  Google Scholar 

  • Duhan JS, Nehra K, Gahlawat SK, Saharan P, Surekha (2013) Bacteriocins from lactic acid bacteria. In: Salar RK, Gahlawat SK, Siwach P, Duhan JS (eds) Biotechnology: prospects and applications. Springer, New Delhi, pp 127–142. ISBN 978-81-322-1682-7 ISBN 978-81-322-1683-4 (eBook). https://doi.org/10.1007/978-81-322-1683-4

    Chapter  Google Scholar 

  • Enright MC, Spratt BG (1999) Multilocus sequence typing. Trends Microbiol 7:482–487

    Article  CAS  PubMed  Google Scholar 

  • Euzéby JP (1997) List of bacterial names with standing in nomenclature: a folder available on the Internet. Int J Syst Bacteriol 47:590–592

    Article  PubMed  Google Scholar 

  • Felis GE, Dellaglio F, Mizzi L, Torriani S (2001) Comparative sequence analysis of a recA gene fragment brings new evidence for a change in the taxonomy of the Lactobacillus casei group. Int J Syst Evol Microbiol 51:2113–2117

    Article  CAS  PubMed  Google Scholar 

  • Fisher MM, Triplett EW (1999) Automated approach for ribosomal intergenic spacer analysis of microbial diversity and its application to freshwater bacterial communities. Appl Environ Microbiol 65:4630–4636

    PubMed  PubMed Central  CAS  Google Scholar 

  • Food, Agriculture Organization of the United Nations (1990) The technology of traditional milk products in developing countries. Food and Agriculture Organization of the United Nations, Rome

    Google Scholar 

  • Fukushima M, Kakinuma K, Kawaguchi R (2002) Phylogenetic analysis of Salmonella, Shigella, and Escherichia coli strains on the basis of the gyrB gene sequence. J Clin Microbiol 40:2779–2785

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Garcia-Martinez J, Acinas SG, Anton AI, Rodriguez-Valera F (1999) Use of the 16S-23S ribosomal genes spacer region in studies of prokaryotic diversity. J Microbiologica Method 36:55–64

    Article  CAS  Google Scholar 

  • Gasser F (1970) Electrophoretic characterization of lactic dehydrogenases in the genus Lactobacillus. J Gen Microbiol 62:223–239

    Article  CAS  PubMed  Google Scholar 

  • Gevers D, Huys G, Swings J (2001) Applicability of rep-PCR fingerprinting for identification of Lactobacillus species. FEMS Microbiol Lett 205:31–36

    Article  CAS  PubMed  Google Scholar 

  • Giraffa G, Neviani E (2000) Molecular identification and characterization of food-associated Lactobacilli. Italian J food Sci 12:403–423

    CAS  Google Scholar 

  • Golic N, Strahinic I, Terzic-Vidojevic A, Begovic J, Nikolic M et al (2012) Molecular diversity among natural populations of Lactobacillus paracasei and Lactobacillus plantarum/paraplantarum strains isolated from autochthonous dairy products. Eur Food Res Technol 234:627–638

    Article  CAS  Google Scholar 

  • Gürtler V (1999) The role of recombination and mutation in 16S-23S rDNA spacer rearrangements. Gene 238:241–252

    Article  PubMed  Google Scholar 

  • Gürtler V, Stanisich VA (1996) New approaches to typing and identification of bacteria using the 16S-23S rDNA spacer region. Microbiologica 142:3–16

    Google Scholar 

  • Gutell RR (1993) Collection of small subunit (16S-and 16S-like) ribosomal RNA structures. Nucleic Acids Res 21:3051

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Holzapfel WH, Haberer P, Geisen R, Bjorkroth J, Schillinger U (2001) Taxonomy and important features of probiotic microorganisms in food and nutrition. Am J Clin Nutr 73:365s–373s

    Article  CAS  PubMed  Google Scholar 

  • Johansson ML, Quednau M, Molin G, Ahrn S (1995) Randomly amplified polymorphic DNA (RAPD) for rapid typing of Lactobacillus plantarum strains. Lett Appl Microbiol 21:155–159

    Article  CAS  PubMed  Google Scholar 

  • Kandler O, Weiss N (1986) Genus lactobacillus. In: Bergey’s manual of systematic bacteriology, vol 2. Springer, Berlin, pp 1209–1234

    Google Scholar 

  • Kimura K, McCartney AL, McConnell MA, Tannock GW (1997) Analysis of fecal populations of bifidobacteria and lactobacilli and investigation of the immunological responses of their human hosts to the predominant strains. Appl Environ Microbiol 63:3394–3398

    PubMed  PubMed Central  CAS  Google Scholar 

  • Klein G, Pack A, Bonaparte C, Reuter G (1998) Taxonomy and physiology of probiotic lactic acid bacteria. Int J Food Microbiol 41:103–125

    Article  CAS  PubMed  Google Scholar 

  • König H, Fröhlich J (2009) Lactic acid bacteria. Biology of microorganisms on grapes, in must and in wine. Springer, Heidelberg, pp 3–29

    Google Scholar 

  • Lortal S, Valence F, Bizet C, Maubois JL (1997) Electrophoretic pattern of peptidoglycan hydrolases, a new tool for bacterial species identification: application to 10 Lactobacillus species. Res Microbiol 148:461–474

    Article  CAS  PubMed  Google Scholar 

  • Ludwig W, Neumaier J, Klugbauer N, Brockmann E, Roller C et al (1993) Phylogenetic relationships of bacteria based on comparative sequence analysis of elongation factor Tu and ATP-synthase Î2-subunit genes. Anton Leeuw 64:285–305

    Article  CAS  Google Scholar 

  • Maassen C, Boersma WJA, van Holten-Neelen C, Claassen E, Laman JD (2003) Growth phase of orally administered Lactobacillus strains differentially affects IgG1/IgG2a ratio for soluble antigens: implications for vaccine development. Vaccine 21:2751–2757

    Article  CAS  PubMed  Google Scholar 

  • Makarova K, Slesarev A, Wolf Y, Sorokin A, Mirkin B et al (2006) Comparative genomics of the lactic acid bacteria. Proc Natl Acad Sci 103:15611–15616

    Article  PubMed  Google Scholar 

  • Mardis ER (2008) The impact of next-generation sequencing technology on genetics. Trend Geneti 24:133–141

    Article  CAS  Google Scholar 

  • Mardis ER (2013) Next-generation sequencing platforms. Ann Rev Anal Chem 6:287–303

    Article  CAS  Google Scholar 

  • Marilley L, Casey MG (2004) Flavours of cheese products: metabolic pathways, analytical tools and identification of producing strains. Int J Food Microbiol 90:139–159

    Article  CAS  PubMed  Google Scholar 

  • Marshall E, Mejia D (2011) Traditional fermented food and beverages for improved livelihoods. FAO

    Google Scholar 

  • McCartney AL (2002) Application of molecular biological methods for studying probiotics and the gut flora. British J Nutri 88:S29–S37

    Article  CAS  Google Scholar 

  • McCartney AL, Wenzhi W, Tannock GW (1996) Molecular analysis of the composition of the bifidobacterial and Lactobacillus microflora of humans. Appl Environ Microbiol 62:4608–4613

    PubMed  PubMed Central  CAS  Google Scholar 

  • Mollet C, Drancourt M, Raoult D (1997) rpoB sequence analysis as a novel basis for bacterial identification. Mol Microbiol 26:1005–1011

    Article  CAS  PubMed  Google Scholar 

  • Mueller UG, Wolfenbarger LL (1999) AFLP genotyping and fingerprinting. Trends Ecol Evol 14:389–394

    Article  CAS  PubMed  Google Scholar 

  • Nguyen DTL, Cnockaert M, Van Hoorde K, De Brandt E, Snauwaert I et al (2013a) Lactobacillus porcinae sp. nov., isolated from traditional Vietnamese nem chua. Int J Syst Evol Microbiol 63:1754–1759

    Article  CAS  PubMed  Google Scholar 

  • Nguyen HKT, Ha DL, Doan TTV, Quach TT, Nguyen HK (2013b) Study of Lactobacillus acidophilus by Restriction Fragment Length Polymorphism (RFLP) analysis. Springer, Berlin, pp 195–197

    Google Scholar 

  • O’Sullivan TF, Fitzgerald GF (1998) Comparison of Streptococcus thermophilus strains by pulse field gel electrophoresis of genomic DNA. FEMS Microbiol Lett 168:213–219

    Article  PubMed  Google Scholar 

  • O’sullivan L, Ross RP, Hill C (2002) Potential of bacteriocin-producing lactic acid bacteria for improvements in food safety and quality. Biochimie 84:593–604

    Article  PubMed  Google Scholar 

  • Olive DM, Bean P (1999) Principles and applications of methods for DNA-based typing of microbial organisms. J Clin Microbiol 37:1661–1669

    PubMed  PubMed Central  CAS  Google Scholar 

  • Olsen GJ, Woese CR (1993) Ribosomal RNA: a key to phylogeny. FASEB J 7:113–123

    Article  CAS  PubMed  Google Scholar 

  • Ouoba LII, Nyanga-Koumou CAG, Parkouda C, Sawadogo H, Kobawila SC et al (2009) Genotypic diversity of lactic acid bacteria isolated from African traditional alkaline-fermented foods. J Appl Microbiol 108:2019–2029

    PubMed  Google Scholar 

  • Palys T, Berger E, Mitrica I, Nakamura LK, Cohan FM (2000) Protein-coding genes as molecular markers for ecologically distinct populations: the case of two Bacillus species. Int J Syst Evol Microbiol 50:1021–1028

    Article  CAS  PubMed  Google Scholar 

  • Prajapati JB (2011) Traditional dairy products in developing countries. Invited paper presented at World Dairy Summit organized by International Dairy Federation. p 16–19

    Google Scholar 

  • Prasad J, Gill H, Smart J, Gopal PK (1998) Selection and characterisation of Lactobacillus and Bifidobacterium strains for use as probiotics. Int Dairy J 18:993–1002

    Article  Google Scholar 

  • Rainey FA, Ward-Rainey NL, Janssen PH, Hippe H, Stackebrandt E (1996) Clostridium paradoxum DSM 7308T contains multiple 16S rRNA genes with heterogeneous intervening sequences. Microbiologica 142:2087–2095

    CAS  Google Scholar 

  • Ramachandran P, Lacher DW, Pfeiler EA, Elkins CA (2013) Development of a tiered multilocus sequence typing scheme for members of the Lactobacillus acidophilus complex. Appl Environ Microbiol 79:7220–7228

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Singh S, Goswami P, Singh R, Heller KJ (2009) Application of molecular identification tools for Lactobacillus, with a focus on discrimination between closely related species: a review. LWT-Food Sci Tech 42:448–457

    Article  CAS  Google Scholar 

  • Song Y (2005) PCR-based diagnostics for anaerobic infections. Anaerobe 11:79–91

    Article  CAS  PubMed  Google Scholar 

  • Stackebrandt E (2003) The richness of prokaryotic diversity: there must be a species somewhere. Food Technol Biotechnol 41:17–22

    Google Scholar 

  • Stackebrandt E, Goebel BM (1994) Taxonomic note: a place for DNA-DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology. Int J Syst Bacteriol 44:846–849

    Article  CAS  Google Scholar 

  • Švec P, Sedláček I, Žáčková L, Nováková D, Kukletová M (2009) Lactobacillus spp. associated with early childhood caries. Folia Microbiol 54:53–58

    Article  CAS  Google Scholar 

  • Tannock GW (1999) Identification of lactobacilli and bifidobacteria. Curr Issues Mol Biol 1:53–64

    PubMed  CAS  Google Scholar 

  • Teuber M (1993) Lactic acid bacteria. In: Biotechnology set, 2nd edn. Weinheim: Wiley p 325–366

    Google Scholar 

  • Thomson CH, Hassan I, Dunn K (2012) Yakult: a role in combating multi-drug resistant Pseudomonas aeruginosa? J Wound Care 21:566–569

    Article  CAS  PubMed  Google Scholar 

  • Tynkkynen S, Satokari R, Saarela M, Mattila-Sandholm T, Saxelin M (1999) Comparison of ribotyping, randomly amplified polymorphic DNA analysis, and pulsed-field gel electrophoresis in typing of Lactobacillus rhamnosus and L. casei strains. Appl Environ Microbiol 65:3908–3914

    PubMed  PubMed Central  CAS  Google Scholar 

  • van den Berg DJC, Smits A, Pot B, Ledeboer AM, Kersters K et al (1993) Isolation, screening and identification of lactic acid bacteria from traditional food fermentation processes and culture collections. Food Biotechnol 7:189–205

    Article  Google Scholar 

  • Van Hoorde K, Verstraete T, Vandamme P, Huys G (2008) Diversity of lactic acid bacteria in two Flemish artisan raw milk Gouda-type cheeses. Food Microbiol 25:929–935

    Article  CAS  PubMed  Google Scholar 

  • Vandamme P, Pot B, Gillis M, De Vos P, Kersters K et al (1996) Polyphasic taxonomy, a consensus approach to bacterial systematics. Microbiol Rev 60:407–438

    PubMed  PubMed Central  CAS  Google Scholar 

  • Ventura M, Zink R (2002) Rapid identification, differentiation, and proposed new taxonomic classification of Bifidobacterium lactis. Appl Environ Microbiol 68:6429–6434

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Versalovic J, Koeuth T, Lupski R (1991) Distribution of repetitive DNA sequences in eubacteria and application to fingerprinting of bacterial genomes. Nucleic Acids Res 19:6823–6831

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Versalovic J, Schneider M, De Bruijn FJ, Lupski JR (1994) Genomic fingerprinting of bacteria using repetitive sequence-based polymerase chain reaction. Methods Mole Cellular Biol 5:25–40

    CAS  Google Scholar 

  • Zabeau M, Vos P (1993) Selective restriction fragment amplification: a general method for DNA fingerprinting. CA Patent CA2,119,557

    Google Scholar 

  • Vos P, Hogers R, Bleeker M, Reijans M, van De Lee T et al (1995) AFLP: a new technique for DNA fingerprinting. Nucleic Acids Res 23:4407–4414

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wells JM, Mercenier A (2008) Mucosal delivery of therapeutic and prophylactic molecules using lactic acid bacteria. Nat Rev Microbiol 6:349–362

    Article  CAS  Google Scholar 

  • Wells JM, Robinson K, Chamberlain LM, Schofield KM, Page RWF (1996) Lactic acid bacteria as vaccine delivery vehicles. Anton Leeuw 70:317–330

    Article  CAS  Google Scholar 

  • Wertz JE, Goldstone C, Gordon DM, Riley MA (2003) A molecular phylogeny of enteric bacteria and implications for a bacterial species concept. J Evol Biol 16:1236–1248

    Article  CAS  PubMed  Google Scholar 

  • Williams AG, Banks JM (1997) Proteolytic and other hydrolytic enzyme activities in non-starter lactic acid bacteria (NSLAB) isolated from cheddar cheese manufactured in the United Kingdom. Int Dairy J 7:763–774

    Article  CAS  Google Scholar 

  • Williams RAD, Sadler SA (1971) Electrophoresis of glucose-6-phosphate dehydrogenase, cell wall composition and the taxonomy of heterofermentative lactobacilli. J Gen Microbiol 65:351–358

    Article  CAS  PubMed  Google Scholar 

  • Winslow CEA, Broadhurst J, Buchanan RE, Krumwiede C Jr, Rogers LA et al (1917) The families and genera of the bacteria preliminary report of the Committee of the Society of American bacteriologists on characterization and classification of bacterial types. J Bacteriol 2:505–566

    PubMed  PubMed Central  CAS  Google Scholar 

  • Wong P, Houry WA (2004) Chaperone networks in bacteria: analysis of protein homeostasis in minimal cells. J Struct Biol 146:79–89

    Article  CAS  PubMed  Google Scholar 

  • Wouters J, Ayad EHE, Hugenholtz J, Smit G (2002) Microbes from raw milk for fermented dairy products. Int Dairy J 12:91–109

    Article  CAS  Google Scholar 

  • Xu F-L, Guo Y-C, Wang H-X, Fu P, Zeng H-W et al (2012) PFGE genotyping and antibiotic resistance of Lactobacillus distributed strains in the fermented dairy products. Ann Microbiol 62:255–262

    Article  CAS  Google Scholar 

  • Zwieb C, Gorodkin J, Knudsen B, Burks J, Wower J (2003) tmRDB (tmRNA database). Nucleic Acids Res 31:446–447

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Nanda, D.K., Chaudhary, R., Kumar, D. (2018). Molecular Approaches for Identification of Lactobacilli from Traditional Dairy Products. In: Gahlawat, S., Duhan, J., Salar, R., Siwach, P., Kumar, S., Kaur, P. (eds) Advances in Animal Biotechnology and its Applications. Springer, Singapore. https://doi.org/10.1007/978-981-10-4702-2_11

Download citation

Publish with us

Policies and ethics