Skip to main content

Combination of Topology Optimization and Optimal Control Method

  • Chapter
  • First Online:
Topology Optimization Theory for Laminar Flow
  • 1454 Accesses

Abstract

This chapter presents the combination of topology optimization and optimal control method to find the optimal match between the material topology and control.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. E. Zeidler, Nonlinear Functional Analysis and Its Applications. I, Fixed-Point Theorems (Springer, Berlin, 1986)

    Google Scholar 

  2. K. Svanberg, The method of moving asymptotes: a new method for structural optimization. Int. J. Numer. Meth. Eng. 24, 359–373 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  3. M.B. Giles, N.A. Pierce, An introduction to the adjoint approach to design. Flow Turbul. Combust. 65, 393–415 (2000)

    Article  MATH  Google Scholar 

  4. B. Mohammadi, O. Pironneau, Applied Shape Optimization for Fluids (OXFORD, 2010)

    Google Scholar 

  5. M. Hinze, R. Pinnau, M. Ulbrich, S. Ulbrich, Optimization with PDE Constraints (Springer, Berlin, 2009)

    MATH  Google Scholar 

  6. http://www.comsol.com

  7. L.H. Olesen, F. Okkels, H. Bruus, A high-level programming-language implementation of topology optimization applied to steady-state Navier-Stokes flow. Int. J. Numer. Meth. Eng. 65, 975–1001 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  8. Y. Deng, Z. Liu, P. Zhang, Y. Liu, Y. Wu, Topology optimization of unsteady incompressible Navier-Stokes flow. J. Comput. Phys. 230, 6688–6708 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  9. B. Lazarov, O. Sigmund, Filters in topology optimization based on Helmholtz type differential equations. Int. J. Numer. Methods Eng. (2010). doi:10.1002/nme.3072

  10. F. Wang, B.S. Lazarov, O. Sigmund, On projection methods, convergence and robust formulations in topology optimization. Struct. Multidiscip. Optim. 43, 767–784 (2011)

    Article  MATH  Google Scholar 

  11. S. Xu, Y. Cai, G. Cheng, Volume preserving nonlinear density filter based on heaviside funtions. Struct. Multidiscip. Optim. 41, 495–505 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  12. J. Guest, J. Prevost, T. Belytschko, Achieving minimum length scale in topology optimization using nodal design variables and projection functions. Int. J. Numer. Methods Eng. 61, 238–254 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  13. O. Sigmund, Morphology-based black and white filters for topology optimization. Struct. Multidiscip. Optim. 33, 401–424 (2007)

    Article  Google Scholar 

  14. A. Kawamoto, T. Matsumori, S. Yamasaki, T. Nomura, T. Kondoh, S. Nishiwaki, Heaviside projection based topology optimization by a PDE-filtered scalar function. Struct. Multidiscip. Optim. (2010). doi:10.1007/s00158-010-0562-2

  15. H.C. Elman, D.J. Silvester, A.J. Wathen, Finite Elements and Fast Iterative Solvers: with Applications in Incompressible Fluid Dynamics (OXFORD, 2006)

    Google Scholar 

  16. R.L. Panton, Incompressible Flow (Wiley, 1984)

    Google Scholar 

  17. T. Borrvall, J. Petersson, Topology optimization of fluid in Stokes flow. Int. J. Numer. Meth. Fluids 41, 77–107 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  18. N. Aage, T.H. Poulsen, A. Gersborg-Hansen, O. Sigmund, Topology optimization of large scale stokes flow problems. Struct. Multidiscip. Optim. 35, 175–180 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  19. P.H. Guillaume, K.S. Idris, Topological sensitivity and shape optimization for the Stokes equations. SIAM J. Cont. Opti. 43, 1–31 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  20. J.K. Guest, J.H. Proevost, Topology optimization of creeping fluid flows using a Darcy-Stokes finite element. Int. J. Numer. Meth. Eng. 66, 461–484 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  21. N. Wiker, A. Klarbring, T. Borrvall, Topology optimization of regions of Darcy and Stokes flow. Int. J. Numer. Meth. Eng. 69, 1374–1404 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  22. A. Gersborg-Hansen, O. Sigmund, R.B. Haber, Topology optimization of channel flow problems. Struct. Multidiscip. Optim. 29, 1–12 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  23. A. Evgrafov, Topology optimization of slightly compressible fluids. ZAMM 86, 46–62 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  24. S. Zhou, Q. Li, A variational level set method for the topology optimization of steady-state Navier-Stokes flow. J. Comput. Phys. 227, 10178–10195 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  25. X. Duan, Y. Ma, R. Zhang, Shape-topology optimization for Navier-Stokes problem using variational level set method. J. Comput. Appl. Math. 222, 487–499 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  26. G. Pingen, K. Maute, Optimal design for non-Newtonian flows using a topology optimization approach. Comput. Math. Appl. 59, 2340–2350 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  27. F. Okkels, H. Bruus, Scaling behavior of optimally structured catalytic microfluidic reactors. Phys. Rev. E 75, 1–4 (2007)

    Article  Google Scholar 

  28. C.S. Andreasen, A.R. Gersborg, O. Sigmund, Topology optimization of microfluidic mixers. Int. J. Numer. Meth. Fluids 61, 498–513 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  29. Y. Deng, Z. Liu, P. Zhang, Y. Wu, J.G. Korvink, Optimization of no-moving part fluidic resistance microvalves with low Reynolds number, in Proceedings IEEE International Conference on Micro Electro Mechanical Systems (MEMS) (2010), pp. 67–70

    Google Scholar 

  30. Y. Deng, Y. Wu, M. Xuan, J.G. Korvink, Z. Liu, Dynamic optimization of valveless micropump, in Proceedings IEEE International Conference on Solid-State Sensors, Actuators, and Microsystems (Transducers) (2011), pp. 442–445

    Google Scholar 

  31. Z. Liu, Y. Deng, S. Lin, M. Xuan, Optimization of micro Venturi diode in steady flow at low Reynolds number. Eng. Optim. 44, 1389–1404 (2012)

    Article  Google Scholar 

  32. Y. Deng, Z. Liu, P. Zhang, Y. Liu, Q. Gao, Y. Wu, A flexible layout design method for passive micromixers. Biomed. Microdevices 14, 929–945 (2012)

    Article  Google Scholar 

  33. M. Sandro, Optimal boundary and distribution controls for the velocity tracking problem for Navier-Stokes flows. Ph.D. Thesis, Blacksburg, Virginia, May, 1997

    Google Scholar 

  34. T. Slawig, PDE-constrained control using FEMLAB—Control of the Navier-Stokes equations. Numer. Algorithms 42, 107–126 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  35. Y. Deng, Z. Liu, P. Zhang, Y. Wu, Y. Liu, Topology optimization of steady and unsteady incompressible Navier-Stokes flows driven by body forces. Struct. Multidiscip. Optim. 47, 555–570 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  36. S.S. Sritharan, Optimal Control of Viscous Flow (SIAM, Philadelphia, 1998)

    Book  MATH  Google Scholar 

  37. D.M. Nosenchuck, G.L. Brown, Discrete spatial control of wall shear stress in a turbulent boundary layer, in Proceedings of the International Conference on Near Wall Turbulence (1993)

    Google Scholar 

  38. C. Foias, R. Temam, Remarques sur les equations de Navier-Stokes stationnaireset les phenomenes successifs de bifurcation. Annali Scuola Norm. Sup. Di Pisa V(1), 29–63 (1978)

    Google Scholar 

  39. Q. Li, G.P. Steven, Y.M. Xie, O.M. Querin, Evolutionary topology optimization for temperature reduction of heat conducting fields. Int. J. Heat Mass Transfer 47(23), 5071–5083 (2004)

    Article  MATH  Google Scholar 

  40. A. Gersborg-Hansen, M.P. Bendsoe, O. Sigmund, Topology optimization of heat conduction problems using the finite volume method. Struct. Multidiscip. Optim. 31, 251–259 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  41. Q. Li, G.P. Steven, O.M. Querin, Y.M. Xie, Shape and topology design for heat conduction by evolutionary structural optimization. Int. J. Heat Mass Transfer 42, 3361–3371 (1999)

    Article  MATH  Google Scholar 

  42. C. Zhuang, Z. Xiong, H. Ding, A level set method for topology optimization of heat conduction problem under multiple load cases. Comput. Methods Appl. Mech. Eng. 196, 1074–1084 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  43. F. Troltzsch, An SQP method for the optimal control of a nonlinear heat equation. Control Cybern. 23, 268–288 (1994)

    MathSciNet  MATH  Google Scholar 

  44. M.D. Gunzburger, L. Hou, T.P. Svobodny, Boundary velocity control of incompressible flow with an application to viscous drag reduction. SIAM J. Control Optim. 30, 167–181 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  45. S.S. Biringen, Active control of transition by periodic suction-blowing. Phys. Fluids 27, 1345–1347 (1984)

    Article  Google Scholar 

  46. H.O. Fattorini, S.S. Biringen, Existence of optimal controls for viscous flow problems. Proc. Roy. Soc. London Series A 439, 81–102 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  47. M.P. Bendsoe, N. Kikuchi, Generating optimal topologies in optimal design using a homogenization method. Comput. Methods Appl. Mech. Eng. 71, 197–224 (1988)

    Article  MATH  Google Scholar 

  48. G.I.N. Rozvany, Shape and Layout Optimization of Structural Systems and Optimality Criteria Methods (Springer, 1994)

    Google Scholar 

  49. G.I.N. Rozvany, Topology Optimization in Structural Mechanics (Springer, 1997)

    Google Scholar 

  50. O. Sigmund, On the design of compliant mechanisms using topology optimization. Mech. Struct. Mach. 25, 495–526 (1997)

    Article  Google Scholar 

  51. O. Sigmund, A 99-line topology optimization code written in Matlab. Struct. Multidiscip. Optim. 21, 120–127 (2000)

    Article  Google Scholar 

  52. A. Saxena, Topology design of large displacement compliant mechanisms with multiple materials and multiple output ports. Struct. Multidiscip. Optim. 30, 477–490 (2005)

    Article  Google Scholar 

  53. S. Kreissl, G. Pingen, K. Maute, Topology optimization for unsteady flow. Int. J. Numer. Meth. Eng. 87, 1229–1253 (2011)

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yongbo Deng .

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Cite this chapter

Deng, Y., Wu, Y., Liu, Z. (2018). Combination of Topology Optimization and Optimal Control Method. In: Topology Optimization Theory for Laminar Flow. Springer, Singapore. https://doi.org/10.1007/978-981-10-4687-2_5

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-4687-2_5

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-4686-5

  • Online ISBN: 978-981-10-4687-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics