Skip to main content
  • 1381 Accesses

Abstract

In this chapter, the state of the art is introduced for the topology optimization of flow problems. The topology optimization method will be introduced for the steady and unsteady flows with body forces, respectively based on the density method and level set method. And the level set method is further used to extend the topology optimization into the area of two-phase flow with two immiscible fluids. It is highlighted that the continuous adjoint method is utilized to implement the analysis of the topology optimization, and this can effectively reduce the dependence on the numerical methods used to discretize the partial differential equations. And the developed topology optimization methods are applied to inversely design the microstructures for the hot microfluidics, and demonstrate the power of topology optimization.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. O. Pironneau, On optimum profiles in Stokes flow. J. Fluid Mech. 59(1), 117–128 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  2. O. Pironneau, On optimum design in fluid mechanics. J. Fluid Mech. 64(1), 97–110 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  3. D.N. Srinath, S. Mittal, An adjoint method for shape optimization in unsteady viscous flows. J. Comput. Phys. 229, 1994–2008 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  4. C. Brandenburg, F. Lindemann, M. Ulbrich, S. Ulbrich, A continuous adjoint approach to shape optimization for Navier-Stokes flow. Int. Ser. Numer. Math. 158, 35–56 (2009)

    MathSciNet  MATH  Google Scholar 

  5. J. Nocedal, S.J. Wright, Numerical Optimization (Springer, 1998)

    Google Scholar 

  6. M.P. Bendsøe, N. Kikuchi, Generating optimal topologies in optimal design using a homogenization method. Comput. Methods Appl. Mech. Eng. 71, 197–224 (1988)

    Article  MATH  Google Scholar 

  7. O. Sigmund, A 99-line topology optimization code written in Matlab. Struct. Multidisc. Optim. 21, 120–127 (2001)

    Article  Google Scholar 

  8. O. Sigmund, On the design of compliant mechanisms using topology optimization. Mech. Struct. Mach. 25, 495–526 (1997)

    Article  Google Scholar 

  9. A. Saxena, Topology design of large displacement compliant mechanisms with multiple materials and multiple output ports. Struct. Multidisc. Optim. 30, 477–490 (2005)

    Article  Google Scholar 

  10. M. Bendsøe, O. Sigmund, Topology Optimization-Theory, Methods and Applications (Springer, 2003)

    Google Scholar 

  11. T. Borrvall, J. Petersson, Topology optimization of fluid in Stokes flow. Int. J. Numer. Meth. Fluids 41, 77–107 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  12. A. Gersborg-Hansen, M.P. Bendsøe, O. Sigmund, Topology optimization of heat conduction problems using the finite volume method. Struct. Multidisc. Optim. 31, 251–259 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  13. T. Nomura, K. Sato, K. Taguchi, T. Kashiwa, S. Nishiwaki, Structural topology optimization for the design of broadband dielectric resonator antennas using the finite difference time domain technique. Int. J. Numer. Meth. Eng. 71, 1261–1296 (2007)

    Article  MATH  Google Scholar 

  14. O. Sigmund, K.G. Hougaard, Geometric properties of optimal photonic crystals. Phys. Rev. Lett. 100, 153904 (2008)

    Article  Google Scholar 

  15. M.B. Duhring, J.S. Jensen, O. Sigmund, Acoustic design by topology optimization. J. Sound Vibr. 317, 557–575 (2008)

    Article  Google Scholar 

  16. W. Akl, A. El-Sabbagh, K. Al-Mitani, A. Baz, Topology optimization of a plate coupled with acoustic cavity. Int. J. Solids Struct. 46, 2060–2074 (2008)

    Article  MATH  Google Scholar 

  17. G.P. Steven, Q. Li, Y.M. Xie, Evolutionary topology and shape design for physical field problems. Comp. Methods Appl. Mech. Eng. Comput. Mech. 26, 129–139 (2000)

    Article  Google Scholar 

  18. G. Allaire, Shape Optimization by the Homogenization Method (Springer, New York, 2002)

    Book  MATH  Google Scholar 

  19. G.I.N. Rozvany, Aims, scope, methods, history and unified terminology of computer-aided topology optimization in structural mechanics. Struct. Multidisc. Optim. 21, 90–108 (2001)

    Article  Google Scholar 

  20. M.P. Bendsøe, O. Sigmund, Material interpolations in topology optimization. Arch. Appl. Mech. 69, 635–654 (1999)

    Article  MATH  Google Scholar 

  21. M.Y. Wang, X. Wang, D. Guo, A level set method for structural optimization. Comput. Meth. Appl. Mech. Eng. 192, 227–246 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  22. G. Allaire, F. Jouve, A. Toader, Structural optimization using sensitivity analysis and a level-set method. J. Comput. Phys. 194, 363–393 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  23. Z. Liu, J.G. Korvink, Adaptive moving mesh level set method for structure optimization. Eng. Optim. 40, 529–558 (2008)

    Article  MathSciNet  Google Scholar 

  24. X. Xing, P. Wei, M.Y. Wang, A finite element-based level set method for structural optimiztion. Int. J. Numer. Meth. Eng. 82, 805–842 (2010)

    MATH  Google Scholar 

  25. P.H. Guillaume, K.S. Idris, Topological sensitivity and shape optimization for the Stokes equations. SIAM J. Cont. Optim. 43, 1–31 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  26. N. Aage, T.H. Poulsen, A. Gersborg-Hansen, O. Sigmund, Topology optimization of large scale stokes flow problems. Struct. Multidisc. Optim. 35, 175–180 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  27. J.K. Guest, J.H. Proevost, Topology optimization of creeping fluid flows using a Darcy-Stokes finite element. Int. J. Numer. Meth. Eng. 66, 461–484 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  28. N. Wiker, A. Klarbring, T. Borrvall, Topology optimization of regions of Darcy and Stokes flow. Int. J. Numer. Meth. Eng. 69, 1374–1404 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  29. A. Gersborg-Hansen, O. Sigmund, R.B. Haber, Topology optimization of channel flow problems. Struct. Multidisc. Optim. 29, 1–12 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  30. L.H. Olessen, F. Okkels, H. Bruus, A high-level programming-language implementation of topology optimization applied to steady-state Navier-Stokes flow. Int. J. Numer. Meth. Eng. 65, 975–1001 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  31. Y. Deng, Z. Liu, P. Zhang, Y. Wu, Jan G. Korvink, Optimization of no-moving-part fluidic resistance microvalves with low Reynolds number, in IEEE MEMS Conference, (HongKong, 2010) pp. 67–70

    Google Scholar 

  32. G. Pingen, K. Maute, Optimal design for non-Newtonian flows using a topology optimization approach. Comput. Math. Appl. 59, 2340–2350 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  33. F. Okkels, L.H. Olesen, H. Bruus, Application of topology optimization in the design of micro and nanofluidic systems. NSTI Nanotech. 575–578 (2005)

    Google Scholar 

  34. F. Okkels, H. Bruus, Scaling behavior of optimally structured catalytic microfluidic reactors. Phys. Rev. E 75, 1–4 (2007)

    Article  Google Scholar 

  35. C.S. Andreasen, A.R. Gersborg, O. Sigmund, Topology optimization of microfluidic mixers. Int. J. Numer. Meth. Fluids 61, 498–513 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  36. S. Osher, J.A. Sethian, Front propagating with curvature dependent speed: algorithms based on Hamilton-Jacobi formulations. J. Comput. Phys. 78, 12–49 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  37. X. Duan, Y. Ma, R. Zhang, Shape-topology optimization for Navier-Stokes problem using variational level set method. J. Comput. Appl. Math. 222, 487–499 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  38. S. Zhou, Q. Li, A variational level set method for the topology optimization of steady-state Navier-Stokes flow. J. Comput. Phys. 227, 10178–10195 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  39. J. Sokolowski, A. Zochowski, On the topological derivative in shape optimization. SIAM J. Control Optim. 37, 1241–1272 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  40. J. Sokolowski, A. Zochowski, Topological derivatives for elliptic problems. Inverse Prob. 15, 123–134 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  41. A.A. Novotny, R.A. Feijoo, E. Taroco, C. Padra, Topological sensitivity analysis. Comput. Meth. Appl. Mech. Engng 192, 803–829 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  42. M. Burger, B. Hackl, W. Ring, Incorporating topological derivatives into level set methods. J. Comput. Phys. 194, 344–362 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  43. S. Amstutz, Topological sensitivity analysis for some nonlinear PDE systems. J. Math. Pures Appl. 85, 540–557 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  44. V.J. Challis, J.K. Guest, Level set topology optimization of fluids in Stokes flow. Int. J. Numer. Meth. Eng. 79, 1284–1308 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  45. M. Abdelwahed, M. Hassine, Topological optimization method for a geometric control problem in Stokes flow. Appl. Numer. Math. 59, 1823–1838 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  46. H. Maatoug, Shape optimization for the Stokes equations using topological snesitivity analysis. ARIMA 5, 216–229 (2006)

    Google Scholar 

  47. M.Y. Wang, Shape optimization with level set method incorporating topological derivatives, in 6th World Congresses of Structural and Multidisciplinary Optimization (2005)

    Google Scholar 

  48. S. Amstutz, The topological asymptotic for the Navier-Stokes equations, ESAIM: control. Optim. Calc. Variat. 11, 401–425 (2005)

    Article  MATH  Google Scholar 

  49. M. Hinze, R. Pinnau, M. Ulbrich, S. Ulbrich, Optimization with PDE constraints (Springer, 2009)

    Google Scholar 

  50. S. Kreissl, G. Pingen, K. Maute, Topology optimization for unsteady flow. Int. J. Numer. Meth. Eng. (2011). doi:10.1002/nme.3151

    MathSciNet  MATH  Google Scholar 

  51. B.C. Chen, N. Kikuchi, Topology optimization with design-dependent loads. Finite Elem. Anal. Design 37, 57–70 (2001)

    Article  MATH  Google Scholar 

  52. T. Gao, W.H. Zhang, J.H. Zhu, Topology optimization of heat conduction problem involving design-dependent heat load effect. Finite Elem. Anal. Design 44, 805–813 (2008)

    Article  Google Scholar 

  53. J.H. Zhu, P. Beckers, W.H. Zhang, On the multi-component layout design with inertial force. J. Comput. Appl. Math. 234, 2222–2230 (2010)

    Article  MATH  Google Scholar 

  54. T. Gao, W.H. Zhang, Topology optimization of multiphase material structures under design-dependent pressure loads. Int. J. Simul. Multidisci. Des. Optim. 3, 297–306 (2009)

    Article  Google Scholar 

  55. M.S. Victor, G.V. Manuel, J.R. Clayton, Wetting and Spreading Dynamics (CRC Press, 2007)

    Google Scholar 

  56. D. Gueyffier, J. Li, A. Nadim, R. Scardovelli, S. Zaleski, Volume-of-fluid interface tracking with smoothed surface stress methods for three-dimensional flows. J. Comput. Phys. 152, 423–456 (1999)

    Article  MATH  Google Scholar 

  57. J. Glimm, J.W. Grove, X.L. Li, K.M. Shyue, Q. Zhang, Y. Zeng, Three-dimensional front tracking. SIAM J. Sci. Comput. 19, 703–727 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  58. C.S. Peskin, D.M. McQueen, Modeling prosthetic heart valves for numerical analysis of blood flow in the heart. J. Comput. Phys. 37, 113–132 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  59. C.S. Peskin, The immersed boundary method. Acta Num. 11, 1–39 (2002)

    Google Scholar 

  60. Y.C. Chang, T.Y. Hou, B. Merriman, S. Osher, A level set formulation of Eulerian interface capturing methods for incompressible fluid flows. J. Comput. Phys. 124, 449–464 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  61. M. Arienti, M. Sussman, An embedded level set method for sharp-interface multiphase simulations of Diesel injectors. Int. J. Multiphas. Flow 59, 1–14 (2014)

    Article  MathSciNet  Google Scholar 

  62. R.F. Engberga, E.Y. Kenig, An investigation of the influence of initial deformation on fluid dynamics of toluene droplets in water. Int. J. Multiphas. Flow 76, 144–157 (2015)

    Article  Google Scholar 

  63. S. Osher, R.P. Fedkiw, Level Set Methods and Dynamic Implicit Surfaces (Springer, New York, 2002)

    MATH  Google Scholar 

  64. J.A. Sethian, P. Smereka, Level set methods for fluid interfaces. Annu. Rev. Fluid Mech. 35, 341–372 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  65. H.A.A. Amiri, A.A. Hamouda, Evaluation of level set and phase field methods in modeling two phase flow with viscosity contrast through dual-permeability porous medium. Int. J. Multiphas. Flow 52, 22–34 (2013)

    Article  Google Scholar 

  66. D.M. Anderson, G.B. McFadden, A.A. Wheeler, Diffuse-interface methods in fluid mechanics. Annu. Rev. Fluid Mech. 30, 139–165 (1998)

    Article  MathSciNet  Google Scholar 

  67. D. Jacqmin, Calculation of two-phase Navier-Stokes flows using phase-field modeling. J. Comput. Phys. 155, 96–127 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  68. J.S. Kim, A continuous surface tension force formulation for diffuse-interface models. J. Comput. Phys. 204, 784–804 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  69. T. Qian, X.P. Wang, P. Sheng, Molecular hydrodynamics of the moving contact line in two-phase immiscible flows. Comm. Comput. Phys. 1, 1–52 (2006)

    MATH  Google Scholar 

  70. D. Jacqmin, Contact-line dynamics of a diffuse fluid interface. J. Fluid Mech. 402, 57–88 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  71. J.W. Cahn, J. Hilliard, Free energy of a nonuniform system: I Interfacial free energy. J. Chem. Phys. 28, 258–267 (1958)

    Article  Google Scholar 

  72. J.A. Sethian, Level set methods and fast marching methods evolving interfaces, in Computational Geometry, Fluid Mechanics, Computer Vision, and Materials Science (Cambridge University Press, 1999)

    Google Scholar 

  73. Y. Deng, Z. Liu, Y. Wu, Optimization of unsteady incompressible Navier-Stokes flows using variational level set method. Int. J. Numer. Meth. Fluids 71, 1475–1493 (2013)

    Article  MathSciNet  Google Scholar 

  74. A. Takezawa, S. Nishiwaki, M. Kitamura, Shape and topology optimization based on the phase field method and sensitivity analysis. Int. J. Comput. Phys. 229, 2697–2718 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  75. S.S. Sritharan, Optimal Control Viscous Flow (SIAM, Philadelphia, 1998)

    Book  MATH  Google Scholar 

  76. J.L. Lions, Optimal Control of Systems Governed by Partial Differential Equations (Springer, New York, 1971)

    Book  MATH  Google Scholar 

  77. J.L. Lions, Some Aspects of the Optimal Control of Distributed Parameter Systems (SIAM, Philadelphia, 1972)

    Book  MATH  Google Scholar 

  78. J.L. Lions, Some Methods in the Mathematical Analysis of Systems and Their Control (Gordon and Breach, New York, 1981)

    MATH  Google Scholar 

  79. N.U. Ahmed, K.L. Teo, Optimal Control of Distributed Parameter Systems (North Holland, New York, 1981)

    MATH  Google Scholar 

  80. V. Barbu, G. Prato, Da, Hamilton Jacobi Equations in Hilbert Spaces (Pitman, Boston, 1983)

    MATH  Google Scholar 

  81. H.O. Fattorini, Time-optimal control of solutions of operational differential equation. SIAM J. Control 2, 54–59 (1964)

    MATH  Google Scholar 

  82. A. Friedman, Optimal control of parabolic equations. J. Math. Anal. Appl. 18, 479–491 (1967)

    Article  MATH  Google Scholar 

  83. A.G. Butkovskii, Theory of Optimal control of Distributed Parameter Systems (Elsevier, 1969)

    Google Scholar 

  84. A.V. Fursikov, On some control problems and results related to the unique solution of mixed problems by the three-dimensional Navier-Stokes and Euler equations. Dokl. Akad. Nauk SSSR 252, 1066–1070 (1980)

    MathSciNet  Google Scholar 

  85. A.V. Fursikov, Control problems and results on the unique solution of mixed problems by the three-dimensional Navier-Stokes and Euler equations. Math. Sbornik 115, 281–306 (1981)

    MATH  Google Scholar 

  86. A.V. Fursikov, Properties of solutions of certain extremum problems related to the Navier-Stokes and Euler equations. Math. Sbornik 117, 323–349 (1981)

    Google Scholar 

  87. A. Jameson, Computational aerodynamics for aircraft design. Math. Sbornik 245, 361–371 (1989)

    Google Scholar 

  88. R. Glowinski, A.J. Kearsley, T.W. Pan, J. Periaux, Numerical simulation and optimal shape for viscous flow by a fictitious domain method. Int. J. Num. Meth. Fluids 20, 695–711 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  89. N.T. Nguyen, Z. Wu, Micromixers - a review. J. Micromech. Microeng. 15, 1–16 (2005)

    Article  Google Scholar 

  90. G. Karniadakis, A. Beskok, N. Aluru, Microflows and Nanoflows: Fundamentals and Simulation (Springer, 2005)

    Google Scholar 

  91. P.S. Dittrich, A. Manz, Lab-on-a-chip: microfluidics in drug discovery. Nat. Rev. Drug Disc. 5, 210 (2006)

    Article  Google Scholar 

  92. A. Manz, J.C.T. Eijkel, Miniaturization and chip technology. What can we expect? Pure Appl. Chem. 73, 1555 (2001)

    Article  Google Scholar 

  93. H.A. Stone, A.D. Stroock, A. Ajdari, Annu. Rev. Fluid Mech. 36, 381 (2004)

    Article  Google Scholar 

  94. T.M. Squires, S.R. Quake, Microfluidics: fluid physics on the nanoliter scale. Rev. Mod. Phys. 77, 977 (2005)

    Article  Google Scholar 

  95. L. OuYang, C. Wang, F. Du, T. Zheng, H. Liang, Paper electrochromatographic separations of multi-component metal complexes on a microfluidic paper-based device with a simplified photolithography. RSC Adv. 4, 1093–1101 (2014)

    Article  Google Scholar 

  96. G.S. Jeong, S. Chung, C.B. Kim, S.H. Lee, Applications of micromixing technology. Analyst 135, 460–473 (2010)

    Article  Google Scholar 

  97. A.D. Stroock, S.K.W. Dertinger, A. Ajdari, I. Mezić, H.A. Stone, G.M. Whitesides, Chaotic mixer for microchannels. Science 295, 647 (2002)

    Article  Google Scholar 

  98. D. Li, Encyclopedia of Microfluidics and Nanofluidics (Springer, 2007)

    Google Scholar 

  99. D.H. Kelley, N.T. Ouellette, Separating stretching from folding in fluid mixing. Nature Physics (2011). doi:10.1038/NPHYS1941

    Google Scholar 

  100. N.T. Nguyen, Micromixer: Fundamentals, Design and Fabrication (William Andrew, 2008)

    Google Scholar 

  101. C.Y. Lee, C.L. Chang, Y.N. Wang, L.M. Fu, Microfluidic mixing: a review. Int. J. Mol. Sci. 12, 3263–3287 (2011)

    Article  Google Scholar 

  102. I. Glasgow, N. Aubry, Lab Chip 3, 114 (2003)

    Article  Google Scholar 

  103. C.H. Lin, C.H. Tsai, C.W. Pan, L.M. Fu, Rapid circular microfluidic mixer utilizing unbalanced driving force. Biomed. Microdevic. 9, 43–50 (2007)

    Article  Google Scholar 

  104. M.Z. Huang, R.J. Yang, C.H. Tai, C.H. Tsai, L.M. Fu, Application of electrokinetic instability flow for enhanced micromixing in cross-shaped microchannel. Biomed. Microdevic. 8, 309–315 (2006)

    Article  Google Scholar 

  105. C.H. Wu, R.J. Yang, Improving the mixing performance of side channel type micromixers using an optimal voltage control model. Biomed. Microdevic. 8, 119–131 (2006)

    Article  Google Scholar 

  106. W. Ng, S. Goh, Y. Lam, C. Yang, I. Rodriguez, Lab Chip 9, 802 (2009)

    Article  Google Scholar 

  107. C.H. Lin, L.M. Fu, Y.S. Chien, Anal. Chem. 76, 5265 (2004)

    Article  Google Scholar 

  108. H. Song, Z. Cai, H. Noh, D. Bennett, Lab Chip 10, 734 (2010)

    Article  Google Scholar 

  109. C.A. Cortes-Quiroza, A. Azarbadegana, M. Zangeneha, A. Goto, Analysis and multi-criteria design optimization of geometric characteristics of grooved micromixer. Chem. Eng. J. 160, 852–864 (2010)

    Article  Google Scholar 

  110. R. Choudhary, T. Bhakat, R.K. Singh, A. Ghubade, S. Mandal, A. Ghosh, A. Rammohan, A. Sharma, S. Bhattacharya, Bilayer staggered herringbone micro-mixers with symmetric and asymmetric geometries. Microfluid. Nanofluid. 10, 271–286 (2011)

    Article  Google Scholar 

  111. M.A. Ansari, K.Y. Kim, Evaluation of surrogate models for optimization of herringbone groove micromixer. J. Mechanic. Sci. Technol. 22, 387–396 (2008)

    Article  Google Scholar 

  112. N.S. Lynn, D.S. Dandy, Geometrical optimization of helical flow in grooved micromixers. Lab Chip 7, 580–587 (2007)

    Article  Google Scholar 

  113. C.A. Cortes-Quiroz, M. Zangeneh, A. Goto, On multi-objective optimization of geometry of staggered herringbone micromixer. Microfluid. Nanofluid. 7, 29–43 (2009)

    Article  Google Scholar 

  114. H. Song, X.Z. Yin, D.J. Bennett, Optimization analysis of the staggered herringbone micromixer based on the slip-driven method. Chem. Eng. Res. Design 86, 883–891 (2008)

    Article  Google Scholar 

  115. M.A. Ansari, K.Y. Kim, Shape optimization of a micromixer with staggered herringbone groove. Chem. Eng. Sci 62, 6687–6695 (2007)

    Article  Google Scholar 

  116. S. Hossain, A. Husain, K.Y. Kim, Shape optimization of a micromixer with staggered-herringbone grooves patterned on opposite walls. Chem. Eng. J. 162, 730–737 (2010)

    Article  Google Scholar 

  117. H.Y. Lee, J. Voldman, Optimizing micromixer design for enhancing dielectrophoretic microconcentrator performance. Anal. Chem. 79, 1833–1839 (2007)

    Article  Google Scholar 

  118. T.G. Kang, M.K. Singh, P.D. Anderson, H.E.H. Meijer, A chaotic serpentine mixer efficient in the creeping flow regime: from design concept to optimization. Microfluid. Nanofluid. 7, 783–794 (2009)

    Article  Google Scholar 

  119. P. B H. Jr, D. R Mott, F. S Ligler, J. P Golden, C. R Kaplan, E. S Oran, A combinatorial approach to microfluidic mixing. J. Micromech. Microeng. 18, 115019(7pp) (2008)

    Google Scholar 

  120. E. Schall, Y. L. Guer, S. Gibout, An anisotropic unstructured meshes mapping method (AUM3) to optimize mixing in laminar periodic flows. Proc. PSFVIP-4 (June 3–5, Chamonix, France, 2003)

    Google Scholar 

  121. M.K. Singh, T.G. Kang, P.D. Anderson, H.E.H. Meijer, A.N. Hrymak, Analysis and optimization of low-pressure drop static mixers. AIChE J. 55, 2208–2216 (2009)

    Article  Google Scholar 

  122. M.K. Singh, T.G. Kang, H.E.H. Meijer, P.D. Anderson, The mapping method as a toolbox to analyze, design, and optimize micromixers. Microfluid. Nanofluid. (2007). doi:10.1007/s10404-007-0251-7

    Google Scholar 

  123. D.R. Mott, P.B.H. Jr, K.S. Obenschain, E.S. Oran, The numerical toolbox: an approach for modeling and optimizing microfluidic components. Mech. Res. Commun. 36, 104–109 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  124. D.R. Mott, P.B. Howell Jr., J.P. Golden, C.R. Kaplan, F.S. Ligler, E.S. Oran, Toolbox for the design of optimized microfluidic components. Lab Chip 6, 540–549 (2006)

    Article  Google Scholar 

  125. T.G. Kang, M.K. Singh, T.H. Kwon, P.D. Anderson, Chaotic mixing using periodic and aperiodic sequences of mixing protocols in a micromixer. Microfluid Nanofluid 4, 589–599 (2008)

    Article  Google Scholar 

  126. S. Qian, H.H. Bau, A Chaotic Electroosmotic Stirrer. Anal. Chem. 74, 3616–3625 (2002)

    Article  Google Scholar 

  127. J.B. Zhang, G.W. He, F. Liu, electroosmotic flow and mixing in heterogeneous microchannels. Phys. Rev. E 73, 056305 (2006)

    Article  Google Scholar 

  128. M. Ammam, Electrophoretic deposition under modulated electric fields: a review. RSC Advanc. 2, 7633–7646 (2012)

    Article  Google Scholar 

  129. R.J. Hunter, Zeta Potential in Colloid Science: Principles and Applications (Academic, New York, 1981)

    Google Scholar 

  130. T.J. Johnson, D. Ross, L.E. Locascio, Rapid microfluidic mixing. Anal. Chem. 74, 45–51 (2002)

    Article  Google Scholar 

  131. C.C. Chang, R.J. Yang, Electrokinetic mixing in microfluidic systems. Microfluid Nanofluid 3, 501–525 (2007)

    Article  Google Scholar 

  132. M. Jain, A. Yeung, K. Nandakumar, Induced charge electro osmotic mixer: Obstacle shape optimization. Biomicrofluidics 3, 022413 (2009)

    Article  Google Scholar 

  133. T.J. Johnson, L.E. Locascio, Characterization and optimization of slanted well designs for microfluidic mixing under electroosmotic flow. Lab Chip 2, 135–140 (2002)

    Article  Google Scholar 

  134. H.S. Woo, B.J. Yoon, I.S. Kang, Optimization of zeta potential distributions for minimal dispersion in an electroosmotic microchannel. Int. J. Heat Mass Trans. 51, 4551–4562 (2008)

    Article  MATH  Google Scholar 

  135. J. Wu, Ac electro-osmotic micropump by asymmetric electrode polarization. J. Appl. Phys. 103, 024907 (2008)

    Article  Google Scholar 

  136. J.P. Urbanski, T. Thorsen, J.A. Levitan, M.Z. Bazant, Fast ac electro-osmotic micropumps with nonplanar electrodes. Appl. Phys. Leet. 89, 143508 (2006)

    Article  Google Scholar 

  137. K. Matsubara, T. Narumi, Microfluidic mixing using unsteady electroosmotic vortices produced by a staggered array of electrodes. Chem. Eng. J. 288, 638–647 (2016)

    Article  Google Scholar 

  138. J.H. Chen, Y.C. Lee, W.H. Hsieh, AC electroosmotic microconcentrator using a face-to-face, asymmetric electrode pair with expanded sections in the bottom electrode. Microfluid Nanofluid 20, 72 (2016)

    Article  Google Scholar 

  139. A.K. Nayak, A. Haque, A. Banerjee, B. Weigand, Flow mixing and electric potential effect of binary fluids in micro/nano channels, Colloids and Surfaces A: Physicochem. Eng. Aspects 512, 145–157 (2017)

    Article  Google Scholar 

  140. C. Risco, R. López-Vizcaíno, C. Sáez, A. Yustres, P. Cañizares, V. Navarro, M.A. Rodrigo, Remediation of soils polluted with 2,4-D by electrokinetic soil flushing with facing rows of electrodes: a case study in a pilot plant. Chem. Eng. J. 285, 128–136 (2016)

    Article  Google Scholar 

  141. K.W. Oh, C.H. Ahn, A review of microvalves. J. Micromech. Microeng. 16, 13–39 (2006)

    Article  Google Scholar 

  142. C.C. Hong, J.W. Choi, C.H. Ahn, A novel in-plane microfluidic mixer with modified tesla structures. Lab chip 4, 109–11 (2004)

    Article  Google Scholar 

  143. A. Olsson, G. Stemme, E. Stemme, A valve-less planar fluid pump with two pump chambers. Sensors Actuators A 46–47, 549–556 (1995)

    Article  Google Scholar 

  144. A. Olsson, P. Enoksson, G. Stemme, E. Stemme, A valve-less planar pump isotropically etched in silicon. J. Micromech. Microeng. 6, 87–91 (1996a)

    Article  Google Scholar 

  145. A. Olsson, G. Stemme, E. Stemme, Diffuser-element design investigation for valve-less pumps. Sensors Actuators A 57, 137–143 (1996b)

    Article  Google Scholar 

  146. A. Olsson, P. Enoksson, G. Stemme, E. Stemme, Micromachined flatwalled valveless diffuser pumps. J. Micromech. Microeng. 6, 161–166 (1997)

    Article  Google Scholar 

  147. A. Olsson, G. Stemme, E. Stemme, Numerical and experimental studies of flatwalled diffuser elements for valve-less micropumps. Sensors Actuators A 84, 165–175 (2000)

    Article  Google Scholar 

  148. E. Stemme, G. Stemme, A valveless diffuser/nozzle based fluid pump. Sensors Actuators A 39, 159–167 (1993)

    Article  Google Scholar 

  149. Y.C. Wang, J.C. Hsu, P.C. Kuo, Loss characteristics and flow rectification property of diffuser valves for micropump applications. Int. J. Heat Mass Trans. 52, 328–336 (2009)

    Article  MATH  Google Scholar 

  150. C. Yamahata, C. Lotto, E. Al-Assaf, M.A.M. Gijs, A PMMA valveless micropump using electromagnetic actuation. Microfluid Nanofluid 1, 197–207 (2005)

    Article  Google Scholar 

  151. N.T. Nguyen, X. Huang, T.K. Chuan, MEMS-micropumps: a review. Trans. ASME J. Fluids Eng. 124, 384–392 (2002)

    Article  Google Scholar 

  152. T. Gerlach, Microdiffusers as dynamic passive valves for micropump applications. Sensors Actuators A 69, 181–191 (1998)

    Article  Google Scholar 

  153. A. Groisman, S.R. Quake, A microfluidic rectifier: anisotropic flow resistance at low Reynolds numbers. Phys. Rev. Lett. 92, 094501 (2004)

    Article  Google Scholar 

  154. M. Carmona, S. Marco, J. Samitier, M.C. Acero, J.A. Plaza, J. Esteve, Microvalve analysis: wall shear and diffuser effects, in International Conference on Modeling and Simulation of Microsystems, pp. 554–557 (1999)

    Google Scholar 

  155. J. Liu, Y.F. Yap, N.T. Nguyen, Behavior of microdroplets in diffuser/nozzle structures. Microfluid. Nanofluid. 6, 835–846 (2009)

    Article  Google Scholar 

  156. A. Groisman, M. Enzelberger, S.R. Quake, Microfluidic memory and control devices. Science 300, 955–958 (2003)

    Article  Google Scholar 

  157. C.T. Wang, P.C. Chang, C.C. Huang, Optimization of diffuser valves. J. Mar. Sci. Tech. 16, 134–138 (2008)

    Google Scholar 

  158. P.W. Runstadler, F.X. Dolan, R.C. Dean, Diffuser Data Book (Creare, New Hampshire, 1975)

    Google Scholar 

  159. F.M. White, Fluid Mech., 4th edn. (WCB/McGraw-Hill, Singapore, 1999)

    Google Scholar 

  160. D.J. Laser, J.G. Santiago, A review of micropumps. J. Micromech. Microeng. 14, 35–64 (2004)

    Article  Google Scholar 

  161. F. Okkels, H. Bruus, Design of micro-fluidic bio-reactors using topology optimization, (ECCOMAS CFD, 2006)

    Google Scholar 

  162. Y. Deng, Y. Wu, Z. Liu, Topology optimization of unsteady incompressible Navier-Stokes flows. J. Comput. Phys. 230, 6688–6708 (2011)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yongbo Deng .

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Cite this chapter

Deng, Y., Wu, Y., Liu, Z. (2018). Introduction. In: Topology Optimization Theory for Laminar Flow. Springer, Singapore. https://doi.org/10.1007/978-981-10-4687-2_1

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-4687-2_1

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-4686-5

  • Online ISBN: 978-981-10-4687-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics