Skip to main content

Nano Molecular Imprinted Polymers (NanoMIPs) for Food Diagnostics and Sensor

  • Chapter
  • First Online:
Nanotechnology

Abstract

The application of biosensors and diagnostics for food safety and quality continues to attract wide attention. Nevertheless, possible drawbacks of reliability, sensitivity and specificity in some complex foods matrices have limited their commercialisation in this field. With the developments in nanotechnology and the ability to synthesise novel nanomaterials with enhanced physical and chemical properties for diverse applications, their use in biosensor fabrication has revolutionised the technology and helped in overcoming some of these problems. The development of biomimics as nano molecular imprinting polymers (nanoMIPs) to replace antibodies as the sensing material in biosensors is overcoming problems of stability, sensitivity and cost associated with biomolecule-based sensors for specific applications. Nowadays nanoMIPs are being synthesised for a range of analytes detection including microorganisms and their toxins, environmental contaminants, pharmaceuticals and allergens. Many have shown potential application in the detection of these analytes in a range of matrices including food samples. In this chapter the design and synthesis of nanoMIPs and their use in the development of sensors and diagnostics and their application for foods sensing application will be reviewed and discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdin MJ, Altintas Z, Tothill IE (2015) In silico designed nanoMIP based optical sensor for endotoxins monitoring. Biosens Bioelectron 67:177–183

    Article  CAS  PubMed  Google Scholar 

  • Altintas Z, Guerreiro A, Piletsky SA, Tothill IE (2015a) NanoMIP based optical sensor for pharmaceuticals monitoring. Sensors Actuators B Chem 213:305–313

    Article  CAS  Google Scholar 

  • Altintas Z, Gittens M, Tothill IE (2015b) Biosensors for waterborne viruses: detection and removal. Biochimie 155:144–154

    Article  Google Scholar 

  • Altintas Z, Pocock J, Thompson K-A, Tothill IE (2015c) Comparative investigations for adenovirus recognition and quantification: plastic or natural antibodies? Biosens Bioelectron 74:996–1004

    Article  CAS  PubMed  Google Scholar 

  • Altintas Z, Gittens M, Guerreiro A, Thompson K-A, Walker J, Piletsky SA, Tothill IE (2015d) Detection of waterborne viruses using high affinity molecularly imprinted polymers. Anal Chem 87:6801–6807

    Article  CAS  PubMed  Google Scholar 

  • Altintas Z, France B, Ortiz JO, Tothill IE (2016a) Computationally modelled receptors for drug monitoring using an optical based biomimetic SPR sensor. Sensors Actuators B Chem 224:726–737

    Article  CAS  Google Scholar 

  • Altintas Z, Abdin MJ, Tothill AM, Karim K, Tothill IE (2016b) Computational design of nanoMIPs for endotoxin recognition and ultrasensitive detection using an SPR sensor. Anal Chem Acta 935:239–248

    Article  CAS  Google Scholar 

  • Ambrosini S, Beyazit S, Haupt K, Tse Sum Bui B (2013) Solid-phase synthesis of molecularly imprinted nanoparticles for protein recognition. Chem Commun 49(60):6746–6748

    Article  CAS  Google Scholar 

  • Ashley J, Shukor Y, Tothill IE (2016) The use of differential scanning fluorimetry in the rational design of plastic antibodies for protein targets. Analyst 141:6463–6470

    Article  CAS  PubMed  Google Scholar 

  • Asliyuce S, Uzun L, Yousefi Rad A, Unal S, Say R, Denizli A (2012) Molecular imprinting based composite cryogel membranes for purification of anti-hepatitis B surface antibody by fast protein liquid chromatography. J Chromatogr B Anal Technol Biomed Life Sci 889–890(1):95–102

    Article  Google Scholar 

  • Bolisay LD, Kofinas P (2010) Imprinted polymer hydrogels for the separation of viruses. Macromol Symp 291–292(1):302–306

    Article  Google Scholar 

  • Bolisay LD, Culver JN, Kofinas P (2007) Optimization of virus imprinting methods to improve selectivity and reduce nonspecific binding. Biomacromolecules 8(12):3893–3899

    Article  CAS  PubMed  Google Scholar 

  • Bossi AM, Sharma PS, Montana L, Zoccatelli G, Laub O, Levi R (2012) Fingerprint-imprinted polymer: rational selection of peptide epitope templates for the determination of proteins by molecularly imprinted polymers. Anal Chem 84(9):4036–4041

    Article  CAS  PubMed  Google Scholar 

  • Can Z, Wenjun L, Wen S, Minglu Z, Lingjia Q, Cuiping L, Fang T (2013) Endotoxin contamination and control in surface water sources and a drinking water treatment plant in Beijing, China. Water Res 47(11):3591–3599

    Article  PubMed  Google Scholar 

  • Canfarotta F, Poma A, Guerreiro A, Piletsky S (2016) Solid-phase synthesis of molecularly imprinted nanoparticles. Nat Protoc 11(3):443–455

    Article  CAS  PubMed  Google Scholar 

  • Caro E, Marce R, Borrull F, Cormack P, Sherrington D (2006) Application of molecularly imprinted polymers to solid-phase extraction of compounds from environmental and biological samples. TrAC Trends Anal Chem 25(2):143–154

    Article  CAS  Google Scholar 

  • Caygill RL, Blair GE, Millner PA (2010) A review on viral biosensors to detect human pathogens. Anal Chim Acta 681(1–2):8–15

    Article  CAS  PubMed  Google Scholar 

  • Chen A, Yang S (2015) Replacing antibodies with aptamers in lateral flow immunoassay. Biosens Bioelectron 71:230–242

    Article  CAS  PubMed  Google Scholar 

  • Chen L, Xu S, Li J (2011) Recent advances in molecular imprinting technology: current status, challenges and highlighted applications. Chem Soc Rev 40(5):2922–2942

    Article  CAS  PubMed  Google Scholar 

  • Chianella I, Lotierzo M, Piletsky S, Tothill IE, Chen B, Turner APF (2002) Rational design of a polymer specific for microcystin-LR using a computational approach. Anal Chem 74:1288–1293

    Article  CAS  PubMed  Google Scholar 

  • Chianella I, Piletsky S, Tothill IE, Chen B, Turner APF (2003) MIP-based solid phase extraction cartridges combined with MIP- based sensors for the detection of microcystin-LR. Biosens Bioelectron 18:119–127

    Article  CAS  PubMed  Google Scholar 

  • Chianella I, Karim K, Piletska EV, Preston C, Piletsky SA (2006) Computational design and synthesis of molecularly imprinted polymers with high binding capacity for pharmaceutical applications-model case: adsorbent for abacavir. Anal Chim Acta 559:73–78

    Article  CAS  Google Scholar 

  • Chianella I, Guerreiro A, Moczko E, Caygill JS, Piletska EV, De Vargas Sansalvador IMP, Whitcombe MJ, Piletsky SA (2013) Direct replacement of antibodies with molecularly imprinted polymer nanoparticles in ELISA-development of a novel assay for vancomycin. Anal Chem 85(17):8462–8468

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cormack PAG, Elorza AZ (2004) Molecularly imprinted polymers: synthesis and characterisation. J Chromatogr B Analyt Technol Biomed Life Sci 804(1):173–182

    Article  CAS  PubMed  Google Scholar 

  • Eksin E, Erdem A, Kuruc AP, Kayi H, Ogunc A (2015) Impedimetric aptasensor based on disposable graphite electrodes developed for thrombin detection. Electroanalysis 27:2864–2871. doi:10.1002/elan.201500226

    Article  CAS  Google Scholar 

  • Fernandes LS, Homem-de-Mello P, de Lima EC, Honorio KM (2015) Rational design of molecularly imprinted polymers for recognition of cannabinoids: a structure-property relationship study. Eur Polym J 71:364–371

    Article  CAS  Google Scholar 

  • Guerreiro AR, Chianella I, Piletska E, Whitcombe MJ, Piletsky SA (2009) Selection of imprinted nanoparticles by affinity chromatography. Biosens Bioelectron 24:2740–2743

    Article  CAS  PubMed  Google Scholar 

  • He C, Long Y, Pan J, Li K, Liu F (2007) Application of molecularly imprinted polymers to solid-phase extraction of analytes from real samples. J Biochem Biophys Methods 70(2):133–150

    Article  CAS  PubMed  Google Scholar 

  • Heurich M, Altintas Z, Tothill IE (2013) Computational design of peptide ligands for Ochratoxin A. Toxins 5(6):1202–1218

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hoshino Y, Shea KJ (2011) The evolution of plastic antibodies. J Mater Chem 21:3517–3521

    Article  CAS  Google Scholar 

  • Hoshino Y, Kodama T, Okahata Y, Shea KJ (2008) Peptide imprinted polymer nanoparticles: a plastic antibody. J Am Chem Soc 130(46):15242–15243

    Article  CAS  PubMed  Google Scholar 

  • Hoshino Y, Koide H, Urakami T, Kanazawa H, Kodama T, Oku N, Shea KJ (2010) Recognition, neutralization, and clearance of target peptides in the bloodstream of living mice by molecularly imprinted polymer nanoparticles: a plastic antibody. J Am Chem Soc 132(19):6644–6645

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jenik M, Schirhagl R, Schirk C, Hayden O, Lieberzeit P, Blaas D, Paul G, Dickert FL (2009) Sensing picornaviruses using molecular imprinting techniques on a quartz crystal microbalance. Anal Chem 81(13):5320–5326

    Article  CAS  PubMed  Google Scholar 

  • Justino CIL, Freitas AC, Pereira R, Duarte AC, Rocha Santos TAP (2015) Recent developments in recognition elements for chemical sensors and biosensors. Trends Anal Chem 68:2–17

    Article  CAS  Google Scholar 

  • Karim K, Breton F, Rouillon R, Piletska EV, Guerreiro A, Chianella I, Piletsky SA (2005) How to find effective functional monomers for effective molecularly imprinted polymers? Adv Drug Deliv Rev 57(12):1795–1808

    Article  CAS  PubMed  Google Scholar 

  • Kerman K, Masato S, Shohei Y, Yuzuru T, Eiichi T (2008) Nanomaterial-based electrochemical biosensors for medical applications. Trends Anal Chem 27:913–947

    Article  Google Scholar 

  • Kleo K, Kapp A, Ascher L, Lisdat F (2011) Detection of vaccinia virus DNA by quartz crystal microbalance. Anal Biochem 418:260–266

    Article  CAS  PubMed  Google Scholar 

  • Li S, Cao S, Whitcombe M, Piletsky SA (2014) Size matters: challenges in imprinting macromolecules. Prog Polm Sci 39:145–163

    Article  CAS  Google Scholar 

  • Li S, Zhu M, Whitcombe MJ, Piletsky SA, Turner APF (2016) Molecularly imprinting polymers for enzymes-like catalysis: principle, design and application. In: Li S, Cao S, Piletsky SA, Turner APF (eds) Molecularly imprinted catalysts. Elsevier Inc, Amsterdam, pp 1–17. doi:http://dx.org/10.1016/B978-0-12-801301-4.0001-3

    Google Scholar 

  • Lim, KF, Zin AM, Romano E, Wanless EJ, Holdsworth CI (2016) Advances and challenges in the design and synthesis of molecularly imprinted microspheres, pp 55–77. In: Li S, Cao S, Piletsky SA, Turner APF (eds) Molecularly imprinted catalysts. Elsevier Inc, pp 1–17. doi:http://dx.doi.org/10.1016/B978-0-12-801301-4.0001-3

  • Madhuri R, Roy E, Gupta K, Sharma PK (2014) Combination of molecular imprinting and nanotechnology: beginning of a new horizon. In: Advanced biomaterials and biodevices. Scrivener Publishing/Wiley, Salem/Hoboken, pp 367–422

    Google Scholar 

  • Martin-Esteban A (2001) Molecularly imprinted polymers: new molecular recognition materials for selective solid-phase extraction of organic compounds. Fresenius J Anal Chem 370:795–802

    Article  CAS  PubMed  Google Scholar 

  • Mayes AG, Whitcombe MJ (2005) Synthetic strategies for the generation of molecularly imprinted organic polymers. Adv Drug Deliv Rev 57:1742–1778

    Article  CAS  PubMed  Google Scholar 

  • Mazzotta E, Turco A, Chianella I, Guerreiro A, Piletsky SA, Malitesta C (2016) Solid-phase synthesis of electroactive nanoparticles of molecularly imprinted polymers. A novel platform for indirect electrochemical sensing applications. Sens Actuator B Chem 229:174–180

    Article  CAS  Google Scholar 

  • Moczko E, Poma A, Guerreiro A, de Vargas Sansalvador IP, Caygill S, Canfarotta F, Whitcombe MJ, Piletsky S (2013) Surface-modified multifunctional MIP nanoparticles. Nanoscale 5:3733–3741

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nishino H, Huang C, Shea KJ (2006) Selective protein capture by epitope imprinting. Angew Chem Int Ed 45:2393–2396

    Article  Google Scholar 

  • Ogawa K, Hyuga M, Okada T, Minoura N (2012) Development of lipid A-imprinted polymer hydrogels that selectively recognize lipopolysaccharides. Biosens Bioelectron 38:215–219

    Article  CAS  PubMed  Google Scholar 

  • Pichon V, Chapuis-Hugon F (2008) Role of molecularly imprinted polymers for selective determination of environmental pollutants-a review. Anal Chim Acta 622:48–61

    Article  CAS  PubMed  Google Scholar 

  • Poma A (2012) Automatic solid-phase synthesis of molecular imprinted nanoparticles (MIP- NPs). PhD thesis, Cranfield University, UK

    Google Scholar 

  • Poma A, Turner APF, Piletsky SA (2010) Advances in the manufacture of MIP nanoparticles. Trends Biotechnol 28(12):629–637

    Article  CAS  PubMed  Google Scholar 

  • Poma A, Guerreiro A, Whitcombe MJ, Piletska EV, Turner AP, Piletsky SA (2013) Solid-phase synthesis of molecularly imprinted polymer nanoparticles with a reusable template- plastic antibodies. Adv Funct Mater 23:2821–2827

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rückert B, Hall AJ, Sellergren B (2002) Molecularly imprinted composite materials via iniferter-modified supports. J Mater Chem 12(8):2275–2280

    Article  Google Scholar 

  • Schirhagl R, Ren K, Zare RN (2012) Surface-imprinted polymers in microfluidic devices. Sci China Chem 55:469–483

    Article  CAS  Google Scholar 

  • Spivak DA (2005) Optimization, evaluation, and characterization of molecularly imprinted polymers. Adv Drug Deliv Rev 57(12):1779–1794

    Article  CAS  PubMed  Google Scholar 

  • Sulitzky C, Rückert B, Hall AJ, Lanza F, Unger K, Sellergren B (2002) Grafting of molecularly imprinted polymer films on silica supports containing surface-bound free radical initiators. Macromolecules 35:79–91

    Article  CAS  Google Scholar 

  • Tai D, Jhang M, Chen G, Wang S, Lu K, Lee Y, Liu H (2010) Epitope-cavities generated by molecularly imprinted films measure the coincident response to anthrax protective antigen and its segments. Anal Chem 82:2290–2293

    Article  CAS  PubMed  Google Scholar 

  • Tothill IE (2010a) Application of nanotechnology in food safety assessment: nano-tracking systems–nanosensors. FAO Round table at Nanoagri 2010, Brazil. http://www.nanoagri2010.com/fao_mini_papers.pdf

  • Tothill IE (2010b) Peptides as molecular receptors. In: Zourob M (ed) Recognition receptors in biosensors. Springer. ISBN:978–1–4419-0918-3

    Google Scholar 

  • Tothill IE (2011) Biosensors and nanomaterials and their application for mycotoxin determination. World Mycotoxins J 4:361–374

    Article  CAS  Google Scholar 

  • Tothill IE, Turner APF (2003) Biosensors. In: Caballero B (Editor in Chief), Trugo L, Finglas P (eds) Encyclopaedia of food sciences and nutrition, 2nd edn. Academic. ISBN:0–12-227055-X

    Google Scholar 

  • Tzouvadaki I, Jolly P, Lu X, Ingebrandt S, de Micheli G, Estrela P, Carrara S (2016) Label-free ultrasensitive memristive aptasensor. Nano Lett 16:4472–4476

    Article  CAS  PubMed  Google Scholar 

  • Whitcombe MJ, Chianella I, Larcombe L, Piletsky SA, Noble J, Porter R, Horgan A (2011) The rational development of molecularly imprinted polymer-based sensors for protein detection. Chem Soc Rev 40(3):1547–1571

    Article  CAS  PubMed  Google Scholar 

  • Willner I, Baron R, Willner B (2007) Integrated nanoparticle-biomolecule systems for biosensing and bioelectronics. Biosens Bioelectron 22:1841–1852

    Article  CAS  PubMed  Google Scholar 

  • Wulff G (2013) Fourty years of molecular imprinting in synthetic polymers: origin, features and perspectives. Microchim Acta 180(15–16):1359–1370

    Article  CAS  Google Scholar 

  • Yadav R, Dwivedi S, Kumar S, Chaudhury A (2010) Trends and perspectives of biosensors for food and environmental virology. Food Environ Virol 2:53–63

    Article  Google Scholar 

  • Zhao Q, Wu M, Chris Le X, Li X (2012) Applications of aptamer affinity chromatography. Trends Anal Chem 41:46–57

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ibtisam E. Tothill .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd.

About this chapter

Cite this chapter

Tothill, I.E., Abdin, M.J. (2017). Nano Molecular Imprinted Polymers (NanoMIPs) for Food Diagnostics and Sensor. In: Prasad, R., Kumar, V., Kumar, M. (eds) Nanotechnology. Springer, Singapore. https://doi.org/10.1007/978-981-10-4678-0_8

Download citation

Publish with us

Policies and ethics