Skip to main content

Production of Cellulose Nanofibrils and Their Application to Food: A Review

  • Chapter
  • First Online:
Nanotechnology

Abstract

Cellulose nanofibrils (CNFs) are one type of nanostructured cellulosic materials with a width below 100 nm and a length of several micrometers. CNFs have many desirable characteristics, such as a unique rheological behavior, high mechanical and barrier properties, and lightweight. They are produced from cotton, wood, grasses, and other lignocellulosic biomass. Thus, CNFs are abundantly available and can be a cheap alternative to petroleum-based polymers. Manufacturing of CNFs consists of pretreatment process and mechanical disintegration process. The pretreatment process makes cellulose fibers more responsive to be fibrillated, and pretreated fibers are mechanically disintegrated into nano-sized fibers in the next stage. Moreover, the type of raw materials can be a principal factor that affects CNFs production and properties. In this chapter, we reviewed the production, characterization, and the current applications of nanocellulose for food industries, such as food additives, food packaging, and coating.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdul Khalil HPS, Davoudpour Y, Nazrul Islam MD, Mustapha A, Sudesh K, Dungani R, Jawaid M (2014) Production and modification of nanofibrillated cellulose using various mechanical processes: a review. Carbohydr Polym 99(2):649–665

    Article  CAS  PubMed  Google Scholar 

  • Abe K, Yano H (2009) Comparison of the characteristics of cellulose microfibril aggregates of wood, rice straw and potato tuber. Cellulose 16:1017–1023

    Article  CAS  Google Scholar 

  • Abe K, Yano H (2010) Comparison of the characteristics of cellulose microfibril aggregates isolated from fiber and parenchyma cells of Moso bamboo (Phyllostachys pubescens). Cellulose 17(2):271–277

    Article  CAS  Google Scholar 

  • Alemdar A, Sain M (2008) Isolation and characterization of nanofibers from agricultural residues-wheat straw and soy hulls. Bioresour Technol 99:1644–1671

    Article  CAS  Google Scholar 

  • Alila S, Besbes I, Vilar MR, Mutje P, Boufi S (2013) Non-woody plants as raw materials for production of microfibrillated cellulose (MFC): a comparative study. Ind Crops Prod 41:250–259

    Article  CAS  Google Scholar 

  • Andrade DRM, Mendonca MH, Helm CV, Magalhães WLE, Muniz GIB, Kestur SG (2015) Assessment of nano cellulose from peach palm residue as potential food additive: part II: preliminary studies. J Food Sci Technol 52(9):5641–5650

    Article  CAS  PubMed  Google Scholar 

  • Andresen M, Stenius P (2007) Water-in-oil emulsions stabilized by hydrophobized microfibrillated cellulose. J Dispers Sci Technol 28:839–844

    Article  CAS  Google Scholar 

  • Arora A, Padua GW (2010) Review: nanocomposites in food packaging. J Food Sci 75(1):R43–R49

    Article  CAS  PubMed  Google Scholar 

  • Arvidsson R, Nguyen D, Svanstrom M (2015) Life cycle assessment of cellulose nanofibrils production by mechanical treatment and two different pretreatment processes. Environ Sci Technol 49:6681–6890

    Article  CAS  Google Scholar 

  • Atic C, Immamoglu S, Valchev I (2005) Determination of specific beating energy-applied on certain pulps in a valley beater. J Univ Chem Technol Metall 40(3):199–204

    Google Scholar 

  • Aulin C, Gällstedt M, Lindström T (2010) Oxygen and oil barrier properties of microfibrillated cellulose films and coatings. Cellulose 17:559–574

    Article  CAS  Google Scholar 

  • Azeredo HMC, Mattoso LHC, Avena-Bustillos RJ, Filho GC, Munford ML, Wood D, McHugh TH (2010) Nanocellulose reinforced chitosan composite films as affected by nanofiller loading and plasticizer content. J Food Sci 75(1):N1–N7

    Article  CAS  PubMed  Google Scholar 

  • Bangyekan C, Aht-Ong D, Srikulkit K (2006) Preparation and properties evaluation of chitosan-coated cassava starch films. Carbohydr Polym 63(1):61–71

    Article  CAS  Google Scholar 

  • Besbes I, Alila S, Boufi S (2011a) Nanofibrillated cellulose from TEMPO-oxidized eucalyptus fibers: effects of the carboxyl content. Carbohydr Polym 84:975–983

    Article  CAS  Google Scholar 

  • Besbes I, Vilar MR, Boufi S (2011b) Nanofibrillated cellulose from Alfa, Eucalyptus and Pine fibres: preparation, characteristics and reinforcing potential. Carbohydr Polym 86:1198–1206

    Article  CAS  Google Scholar 

  • Bhatnagar A, Sain M (2005) Processing of cellulose nanofiber reinforced composites. J Reinf Plast Compos 24:1259–1268

    Article  CAS  Google Scholar 

  • Britto D, Assis OBG (2009) Thermal degradation of carboxymethylcellulose in different salty forms. Thermochim Acta 494:115–122

    Article  CAS  Google Scholar 

  • Brodin R, Gregersen ØW, Syverud K (2014) Cellulose nanofibrils: challenges and possibilities as a paper additive or coating material – a review. Nordic Pulp Paper Res J 29(1):156–166

    Article  CAS  Google Scholar 

  • Bruce DM, Hobson RN, Farrent JW, Hepworth DG (2005) High-performance composites from low-cost plant primary cell walls. Compos Part A Appl Sci Manuf 36(11):1486–1493

    Article  CAS  Google Scholar 

  • Campaniello D, Bevilacqua A, Sinigaglia M, Corbo MR (2008) Chitosan: antimicrobial activity and potential applications for preserving minimally processed strawberries. Food Microbiol 25(8):992–1000

    Article  CAS  PubMed  Google Scholar 

  • Chaker A, Alila S, Mutje P, Vilar MR, Boufi S (2013) Key role of the hemicellulose content and the cell morphology on the nanofibrillation effectiveness of cellulose pulps. Cellulose 20:2860–2875

    Article  CAS  Google Scholar 

  • Chakraborty A, Sain M, Kortschot M (2005) Cellulose microfibrils: a novel method of preparation using high shear refining and cryocrushing. Holzforschung 59:102–107

    Article  CAS  Google Scholar 

  • Chakraborty A, Sain M, Kortschot M, Cutler S (2007a) Dispersion of wood microfibers in a matrix of thermoplastic starch and starch-polylactic acid blend. J Biobaased Mater Bioenergy 1:71–77

    Google Scholar 

  • Chakraborty A, Sain MM, Kortschot MT, Ghosh SB (2007b) Modeling energy consumption for the generation of microfibres from bleached kraft pulp fibres in a PFI mill. Bioresources 2(2):210–222

    CAS  Google Scholar 

  • Chen W, Yu H, Liu Y, Chen P, Zhang M, Hai Y (2011a) Individualization of cellulose nanofibers from wood using high-intensity ultrasonication combined with chemical pretreatments. Carbohydr Polym 83:1804–1811

    Article  CAS  Google Scholar 

  • Chen W, Yu H, Liu Y, Hai Y, Zhang M, Chen P (2011b) Isolation and characterization of cellulose nanofibers from four plant cellulose fibers using a chemical-ultrasonic process. Cellulose 18:433–442

    Article  CAS  Google Scholar 

  • Cheng Q, Wang S, Rials TG, Lee S (2007) Physical and mechanical properties of polyvinyl alcohol and polypropylene composite materials reinforced with fibril aggregates isolated from regenerated cellulose fibers. Cellulose 14:593–602

    Article  CAS  Google Scholar 

  • Díez I, Eronen P, Österberg M (2011) Functionalization of nanofibrillated cellulose with silver nanoclusters: fluorescence and antibacterial activity. Macromol Biosci 11:1185–1191

    Article  PubMed  CAS  Google Scholar 

  • Dinand E, Chanzy H, Vignon RM (1999) Suspensions of cellulose microfibrils from sugar beet pulp. Food Hydrocoll 13:275–283

    Article  CAS  Google Scholar 

  • Dong XM, Revol J, Gray DG (1998) Effect of microcrystalline preparation conditions on the formation of colloid crystals of cellulose. Cellulose 5:19–32

    Article  CAS  Google Scholar 

  • Dufresne A (2012) Nanocellulose: from nature to high performance tailored materials. Walter de Gruyer, Berlin/New York

    Book  Google Scholar 

  • Dufresne A, Vignon MR (1998) Improvement of starch film performances using cellulose microfibrils. Macromolecules 31:2693–2696

    Article  CAS  Google Scholar 

  • Dufresne A, Dupeyre D, Vignon MR (2000) Cellulose microfibrils from potato tuber cells: processing and characterization of starch–cellulose microfibril composites. J Appl Polym Sci 76:2080–2092

    Article  CAS  Google Scholar 

  • Durango AM, Soares NFF, Andrade NJ (2006) Microbiological evaluation of an edible antimicrobial coating on minimally processed carrots. Food Control 17:336–341

    Article  CAS  Google Scholar 

  • EIA (2009) Residential energy consumption survey. U.S. Energy Information Administration. http://www.eia.gov/consumption/residential/reports/2009/state_briefs. Accessed 2 July 2016

  • Eriksen Ø, Syverud K, Gregersen Ø (2008) The use of microfibrillated cellulose produced from kraft pulp as strength enhancer in TMP paper. Nordic Pulp Paper Res J 23(3):299–304

    Article  CAS  Google Scholar 

  • Eyholzer C, Bordeanu N, Lopez-Suevos F, Rentsch D, Zimmermann T, Oksman K (2010) Preparation and characterization of water-redispersible nanofibrillated cellulose in powder form. Cellulose 17:19–30

    Article  CAS  Google Scholar 

  • Fernandes SCM, Freire CSR, Silvestre AJD, Neto CP, Gandini A, Berglund LA, Salmén L (2010) Transparent chitosan films reinforced with a high content of nanofibrillated cellulose. Carbohydr Polym 81(2):394–401

    Article  CAS  Google Scholar 

  • Fernández A, Picouet P, Lloret E (2010) Cellulose-silver nanoparticle hybrid materials to control spoilage-related microflora in absorbent pads located in trays of fresh-cut melon. Int J Food Microbiol 140:222–228

    Article  CAS  Google Scholar 

  • Freire CSR, Silvestre AJD, Pascoal Neto C, Gandini A, Martin L, Mondragon I (2008) Composites based on acylated cellulose fibers and low density polyethylene: effect of the fiber content, degree of substitution and fatty acid chain length on final properties. Compos Sci Technol 68:3358–3364

    Article  CAS  Google Scholar 

  • Fukuzumi H, Saito T, Iwata T, Kumamoto Y, Isogai A (2009) Transparent and high gas barrier films of cellulose nanofibers prepared by TEMPO-mediated oxidation. Biomacromolecules 10:162–165

    Article  CAS  PubMed  Google Scholar 

  • Fukuzumi H, Saito T, Okita Y, Isogai A (2010) Thermal stabilization of TEMPO-oxidized cellulose. Polym Degrad Stab 95:1502–1508

    Article  CAS  Google Scholar 

  • Gatenholm P, Klemm D (2010) Bacterial nanocellulose as a renewable material for biomedical applications. MRS Bull 35:208–213

    Article  CAS  Google Scholar 

  • Gavillon R (2007) Preparation and characterization of ultra porous cellulosic materials. Thesis, Mechanics. Ecole Nationale Superieure des Mines de Paris

    Google Scholar 

  • Gharehkhani S, Sadeghinezhad E, Kazi SN, Yarmand H, Badarudin A, Safaei MR, Zubir MN (2015) Basic effects of pulp refining on fiber properties – a review. Carbohydr Polym 115:785–803

    Article  CAS  PubMed  Google Scholar 

  • Gómez HC, Serpa A, Velásquez-Cock J, Gañán P, Castro C, Vélez L, Zuluaga R (2016) Vegetable nanocellulose in food science: a review. Food Hydrocoll 57:178–186

    Article  CAS  Google Scholar 

  • Guise C, Fangueiro R (2016) Biomedical applications of nanocellulose. In: Rangueiro R, Rana S (eds) Natural fibres: advances in sciences and technology towards industrial applications. Springer, Dordrecht, pp 155–169

    Chapter  Google Scholar 

  • Hamad WY (1997) Some microrheological aspects of wood-pulp fibres subjected to fatigue loading. Cellulose 4:51–56

    Article  CAS  Google Scholar 

  • Hassan ML, Mathew AP, Hassan EA, El-Wakil NA, Oksman K (2012) Nanofibers from bagasse and rice straw: process optimization and properties. Wood Sci Technol 46(1):193–205

    Article  CAS  Google Scholar 

  • Henriksson M, Berglund LA (2007) Structure and properties of cellulose nanocomposite films containing melamine formaldehyde. J Appl Polym Sci 106(4):2817–2824

    Article  CAS  Google Scholar 

  • Henriksson M, Henriksson G, Berglund LA, Lindström T (2007) An environmentally friendly method for enzyme-assisted preparation of microfibrillated cellulose (CNFS) nanofibers. Eur Polym J 43:3434–3441

    Article  CAS  Google Scholar 

  • Henriksson M, Berglund LA, Isaksson P, Lindström T, Nishino T (2008) Cellulose nanopaper structure of high toughness. Biomacromolecules 9:1579–1585

    Article  CAS  PubMed  Google Scholar 

  • Herrick FW, Casebier RL, Hamilton JK, Sandberg KR (1983) Microfibrillated cellulose: morphology and accessibility. J Appl Polym Sci Appl Polym Symp 37:797–813

    CAS  Google Scholar 

  • Hoeng F, Deneulin A, Bras J (2016) Use of nanocellulose in printed electronics: a review. Nanoscale 8:13131–13154

    Article  CAS  PubMed  Google Scholar 

  • Hou XD, Smith TJ, Li N, Zong MH (2012) Novel renewable ionic liquids as highly effective solvents for pretreatment of rice straw biomass by selective removal of lignin. Biotechnol Bioeng 109(10):2484–2493

    Article  CAS  PubMed  Google Scholar 

  • Iwamoto S, Nakagaito AN, Yano H, Nogi M (2005) Optically transparent composites reinforced with plant fiber-based nanofibers. Appl Phys A Mater Sci Process 81:1109–1112

    Article  CAS  Google Scholar 

  • Iwamoto S, Nakagaito AN, Yano H (2007) Nano-fibrillation of pulp fibers for the processing of transparent nanocomposites. Appl Phys A Mater Sci Process 89:461–466

    Article  CAS  Google Scholar 

  • Iwamoto S, Abe K, Yano H (2008) The effect of hemicellulose on wood pulp nanofibrillation and nanofiber network characteristics. Biomacromolecules 9:1022–1026

    Article  CAS  PubMed  Google Scholar 

  • Iwatake A, Nogi M, Yano H (2008) Cellulose nanofiber-reinforced polylactic acid. Compos Sci Technol 68:2103–2106

    Article  CAS  Google Scholar 

  • Jiang F, Hsieh Y (2013) Chemically and mechanically isolated nanocellulose and their self-assembled structures. Carbohydr Polym 95:32–40

    Article  CAS  PubMed  Google Scholar 

  • Jonoobi M, Harun J, Mathew AP, Oksman K (2010) Mechanical properties of cellulose nanofiber (CNF) reinforced polylactic acid (PLA) prepared by twin screw extrusion. Compos Sci Technol 70(12):1742–1747

    Article  CAS  Google Scholar 

  • Jonoobi M, Khazaeian A, Tahir PM, Azry SS, Oksman K (2011) Characteristics of cellulose nanofibers isolated from rubberwood and empty fruit bunches of oil palm using chemo-mechanical process. Cellulose 18(4):1085–1095

    Article  CAS  Google Scholar 

  • Jonoobi M, Mathew AP, Oksman K (2012) Producing low-cost cellulose nanofiber from sludge as new source of raw materials. Ind Crops Prod 40:232–238

    Article  CAS  Google Scholar 

  • Jonoobi M, Oladi R, Davoudpour Y, Oksman K, Dufresne A, Hamzeh Y, Davoodi R (2015) Different preparation methods and properties of nanostructured cellulose from various natural resources and residues: a review. Cellulose 22(2):935–969

    Article  CAS  Google Scholar 

  • Jorfi M, Foster EJ (2015) Recent advances in nanocellulose for biomedical applications. J Appl Polym Sci 132(14):41719. doi:10.1002/app.41719

    Article  CAS  Google Scholar 

  • Josset S, Orsolini P, Siqueira G, Tejado A, Tingaut P, Zimmermann T (2014) Energy consumption of the nanofibrillation of bleached pulp, wheat straw and recycled newspaper through a grinding process. Nordic Pulp Paper Res J 29(1):167–175

    Article  CAS  Google Scholar 

  • Khan A, Huq T, Khan RA, Riedl B, Lacroix M (2014) Nanocellulose-based composites and bioactive agents for food packaging. Crit Rev Food Sci Nutr 54:163–174

    Article  CAS  PubMed  Google Scholar 

  • Kim J, Shim BS, Kim HS, Lee Y, Min S, Jang D, Abas Z, Kim J (2015) Review of nanocellulose for sustainable future materials. Int J Precis Eng Manuf-Green Technol 2(2):197–213

    Article  Google Scholar 

  • Kingsland C (2010) PLA: a critical analysis. Mohawk College of Applied Arts and Technology. http://www.iopp.org/files/public/KingslandCaseyMohawk.pdf. Assessed 15 Sept 2015

  • Kleinschmidt DC, Roberts BA, Fuqua DL, Melchion JR (1988) Filling-containing, dough-based products containing cellulosic fibrils and microfibrils. US Patent 4,774,095A, Sept 1988

    Google Scholar 

  • Klemm D, Heublein B, Fink HP, Bohn A (2005) Cellulose: fascinating biopolymer and sustainable raw material. Angew Chem Int Ed 44:3358–3393

    Article  CAS  Google Scholar 

  • Klemm D, Kramer F, Mortiz S, Lindström T, Ankerfors M, Gray D, Dorris A (2011) Nanocelluloses: a new family of nature-based materials. Angew Chem Int Ed 50(24):5438–5466

    Article  CAS  Google Scholar 

  • Krässig HA (1993) Cellulose-structure, accessibility, and reactivity. Gordon and Breach, Amsterdam

    Google Scholar 

  • Lavoine N, Desloges I, Dufresne A, Bras J (2012) Microfibrillated cellulose – its barrier properties and applications in cellulosic materials: a review. Carbohydr Polym 90(2):735–764

    Article  CAS  PubMed  Google Scholar 

  • Leitner J, Hinterstoisser B, Wastyn M, Keckes J, Gindl W (2007) Sugar beet cellulose nanofibril-reinforced composites. Cellulose 14:419–425

    Article  CAS  Google Scholar 

  • Li S, Jia N, Ma M, Zhang Z, Liu Q, Sun R (2011) Cellulose–silver nanocomposites: microwave-assisted synthesis, characterization, their thermal stability, and antimicrobial property. Carbohydr Polym 86:441–447

    Article  CAS  Google Scholar 

  • Li J, Wei X, Wanga Q, Chena J, Changa G, Kongc L, Sud J, Liue Y (2012) Homogeneous isolation of nanocellulose from sugarcane bagasse by high pressure homogenization. Carbohydr Polym 90:1609–1613

    Article  CAS  PubMed  Google Scholar 

  • Li F, Mascheroni E, Piergiovanni L (2015) The potential of nanocellulose in the packaging field: a review. Packag Technol Sci 28:475–508

    Google Scholar 

  • Lin N, Dufresne A (2014) Nanocellulose in biomedicine: current status and future prospect. Eur Polym J 59:302–325

    Article  CAS  Google Scholar 

  • Lu J, Wang T, Drzal LT (2008) Preparation and properties of microfibrillated cellulose polyvinyl alcohol composite materials. Compos Part A Appl Sci Manuf 39:738–746

    Article  CAS  Google Scholar 

  • Lu Y, Tekinalp HL, Peter WH, Eberle C, Naskar AK, Ozcan S (2014) Nanocellulose in polymer composites and biomedical: research and applications. TAPPI J 13(6):47–54

    CAS  Google Scholar 

  • Malainine ME, Mahrouz M, Dufresne A (2005) Thermoplastic nanocomposites based on cellulose microfibrils from opuntia ficus-indica parenchyma cell. Compos Sci Technol 65:1520–1526

    Article  CAS  Google Scholar 

  • Martins NCT, Freire CSR, Pinto RJB, Fernandes SCM, Neto CP, Silvestre AJD, Causio J, Baldi G, Sadocco P, Trindade T (2012) Electrostatic assembly of Ag nanoparticles onto nanofibrillated cellulose for antibacterial paper products. Cellulose 19(4):1425–1236

    Article  CAS  Google Scholar 

  • Nair SS, Zhu LY, Deng Y, Ragauskas AJ (2014) High performance green barriers based on nanocellulose. Sustain Chem Processes 2:23. doi:10.1186/s40508-014-0023-0

    Article  CAS  Google Scholar 

  • Nakagaito AN, Yano H (2004) The effect of morphological changes from pulp fiber towards nano-scale fibrillated cellulose on the mechanical properties of high-strength plant fiber based composites. Appl Phys A Mater Sci Process 78:547–552

    Article  CAS  Google Scholar 

  • Nakagaito AN, Fujimura A, Sakai T, Hama Y, Yano H (2009) Production of microfibrillated cellulose (MFC)-reinforced polylactic acid (PLA) nanocomposites from sheets obtained by a papermaking-like process. Compos Sci Technol 69:1293–1297

    Article  CAS  Google Scholar 

  • Nogi M, Iwamoto S, Nakagaito AN, Yano H (2009) Optically transparent nanofiber paper. Adv Mater 21:1595–1598

    Article  CAS  Google Scholar 

  • Nordqvist D, Idermark J, Hedenqvist MS (2007) Enhancement of the wet properties of transparent chitosan-acetic-acid-salt films using microfibrillated cellulose. Biomacromolecules 8:2398–2403

    Article  CAS  PubMed  Google Scholar 

  • Norppa H (2012) Nanofibrillated cellulose: results of in vitro and in vivo toxicological assays. Paper presented at Sunpap conference, 19–20 June 2012

    Google Scholar 

  • Okahisa Y, Abe K, Nogi M, Nakagaito AN, Nakatani T, Yano H (2011) Effects of delignification in the production of plant-based cellulose nanofibers for optically transparent nanocomposites. Compos Sci Technol 71(10):1342–1347

    Article  CAS  Google Scholar 

  • Osong SH, Norgren S, Engstrand P (2016) Processing of wood-based microfibrillated cellulose and nanofibrillated cellulose, and applications relating to papermaking: a review. Cellulose 23:93–123

    Article  CAS  Google Scholar 

  • Pääkkö M, Ankerfors M, Kosonen H, Nykänen A, Ahola S, Österberg M, Ruokolainen J, Laine J, Larsson PT, Ikkala O, Lindström T (2007) Enzymatic hydrolysis combined with mechanical shearing and high-pressure homogenization for nanoscale cellulose fibrils and strong gels. Biomacromolecules 8:1934–1941

    Article  PubMed  CAS  Google Scholar 

  • Pereira MM, Raposo NRB, Brayner R, Teixeira EM, Oliveira V, Quintão CCR (2013) Cytotoxicity and expression of genes involved in the cellular stress response and apoptosis in mammalian fibroblast exposed to cotton cellulose nanofibers. Nanotechnology 24:075103. doi:10.1088/0957-4484/24/7/075103

    Article  CAS  PubMed  Google Scholar 

  • Plackett D, Auturi H, Hedenqvist M, Ankerfors M, Gällstedt M, Lindström T, Siro I (2010) Physical properties and morphology of films prepared from microfibrillated cellulose and microfibrillated cellulose in combination with amylopectin. J Appl Polym Sci 117(6):3601–3609

    CAS  Google Scholar 

  • Rodionova G, Saito T, Lenes M, Eriksen Ø, Gregersen Ø, Fukuzumi H, Isogai A (2012) Mechanical and oxygen barrier properties of films prepared from fibrillated dispersions of TEMPO-oxidized Norway spruce and Eucalyptus pulps. Cellulose 19:705–711

    Article  CAS  Google Scholar 

  • Sabo R, Yermakov A, Law CT, Elhajjar R (2016) Nanocellulose-enabled electronics, energy harvesting device, smart materials and sensors: a review. J Renew Mater. http://dx.doi.org.proxy-remote.galib.uga.edu/10.7569/JRM.2016.634114

  • Saito T, Nishiyama Y, Putaux JL, Vignon M, Isogai A (2006) Homogeneous suspensions of individualized microfibrils from TEMPO-catalyzed oxidation of native cellulose. Biomacromolecules 7:1687–1691

    Article  CAS  PubMed  Google Scholar 

  • Saito T, Kimura S, Nishiyama Y, Isogai A (2007) Cellulose nanofibers prepared by TEMPO-mediated oxidation of native cellulose. Biomacromolecules 8:2485–2491

    Article  CAS  PubMed  Google Scholar 

  • Saito T, Hirota M, Tamura N, Kimura S, Fukuzumi H, Heuz L, Isogai A (2009) Individualization of nano-sized plant cellulose fibrils by direct surface carboxylation suing TEMPO catalyst under neutral conditions. Biomacromolecules 7:1687–1691

    Article  CAS  Google Scholar 

  • Sehaqui H, Zhou Q, Ikkala O, Berglund LA (2011) Strong and tough cellulose nanopaper with high specific surface area and porosity. Biomacromolecules 12(10):3638–3644

    Article  CAS  PubMed  Google Scholar 

  • Sharma S, Nair SS, Zhang Z, Ragauskas AJ, Deng Y (2015) Characterization of micro fibrillation process of cellulose and mercerized cellulose pulp. RSC Adv 5:63111–63122

    Article  CAS  Google Scholar 

  • Singh J, Dartois A, Kaur L (2010) Starch digestibility in food matrix: a review. Trends Food Sci Technol 21(4):168–180

    Article  CAS  Google Scholar 

  • Siqueira G, Tapin-Lingua S, Bras J, da Silva PD, Dufresne A (2010) Morphological investigation of nanoparticles obtained from enzymatic and acid hydrolysis of sisal fibers. Cellulose 17:1147–1158

    Article  CAS  Google Scholar 

  • Siro I, Plackett D (2010) Microfibrillated cellulose and new nanocomposite materials: a review. Cellulose 17:459–494

    Article  CAS  Google Scholar 

  • Sjöström E (1993) Wood chemistry: fundamentals and applications, 2nd edn. Gulf Professional Publishing, Houston

    Google Scholar 

  • Smook GA (2002) Handbook for pulp & paper technologists, 3rd edn. Angus Wilde Publications Inc., Vancouver

    Google Scholar 

  • Son W, Youk J, Lee T, Park W (2004) Preparation of antimicrobial ultrafine cellulose acetate fibers with silver nanoparticles. Macromol Rapid Commun 25(18):1632–1637

    Article  CAS  Google Scholar 

  • Son W, Youk J, Lee T, Park W (2006) Antimicrobial cellulose acetate nanofibers containing silver nanoparticles. Carbohydr Polym 65(4):430–434

    Article  CAS  Google Scholar 

  • Spence KL, Venditti RA, Habibi Y, Rojas OJ, Pawlak JJ (2010a) The effect of chemical composition on microfibrillar cellulose films from wood pulps: mechanical processing and physical properties. Bioresour Technol 101:5961–5968

    Article  CAS  PubMed  Google Scholar 

  • Spence KL, Venditti RA, Habibi Y, Rojas OJ, Pawlak JJ (2010b) The effect of chemical composition on microfibrillar cellulose films from wood pulps: water interactions and physical properties for packaging applications. Cellulose 17:835–848

    Article  CAS  Google Scholar 

  • Spence KL, Benditti RA, Rojas OJ, Habibi Y, Pawlak JJ (2011) A comparative study of energy consumption and physical properties of microfibrillated cellulose produced by different processing methods. Cellulose 18:1097–1111

    Article  CAS  Google Scholar 

  • Stelte W, Sanadi AR (2009) Preparation and characterization of cellulose nanofibers from two commercial hardwood and softwood pulps. Ind Eng Chem Res 48:11211–11219

    Article  CAS  Google Scholar 

  • Stevens MP (1999) Polymer chemistry: an introduction, 3rd edn. Oxford University Press, New York

    Google Scholar 

  • Ström G, Ohgren C, Ankerfors M (2013) Nanocellulose as an additive in foodstuff. Innventia Report B, 403. http://www.innventia.com/Documents/Rapporter/Innventia%20report403.pdf. Accessed 29 July 2016

  • Sundaram J, Pant J, Goudie MJ, Mani S, Handa H (2016) Antimicrobial and physicochemical characterization of biodegradable, nitric oxide-releasing nanocellulose−chitosan packaging membranes. J Agric Food Chem 64:5260–5266

    Article  CAS  PubMed  Google Scholar 

  • Suryanegara L, Nakagaito AN, Yano H (2009) The effect of crystallization of PLA on the thermal and mechanical properties of microfibrillated cellulose-reinforced PLA composites. Compos Sci Technol 69:1187–1192

    Article  CAS  Google Scholar 

  • Syverud K, Stenius P (2009) Strength and barrier properties of MFC films. Cellulose 16:75–85

    Article  CAS  Google Scholar 

  • Taniguchi T, Okamura K (1998) New films produced from microfibrillated natural fibres. Polym Int 47:291–294

    Article  CAS  Google Scholar 

  • TAPPI (2000) T248 sp-00, Laboratory beating of pulp (PFI mill method). Technical Association of the Pulp and Paper Industry, Norcross

    Google Scholar 

  • TAPPI (2001) T200 sp-01, Laboratory beating of pulp (Valley beater method). Technical Association of the Pulp and Paper Industry, Norcross

    Google Scholar 

  • TAPPI (2015) Summary of international activities on cellulosic nanomaterials. Technical Association of the Pulp and Paper Industry, Norcross. http://www.tappinano.org/media/1096/tc6-world-cnm-activities-summary-july-29-2015.pdf. Accessed 15 Nov 2015

  • Tripathi S, Mehrotra GK, Dutta PK (2009) Physicochemical and bioactivity of cross-linked chitosan–PVA film for food packaging applications. Int J Biol Macromol 45:372–376

    Article  CAS  PubMed  Google Scholar 

  • Turbak AF, Snyder FW, Sandberg KR (1982) Food products containing microfibrillated cellulose. US Patent 43,418,071,982, July 1982

    Google Scholar 

  • Turbak AF, Snyder FW, Sandberg KR (1983a) Microfibrillated cellulose, a new cellulose product: properties, uses, and commercial potential. J Appl Polym Sci Appl Polym Symp 37:815–827

    CAS  Google Scholar 

  • Turbak AF, Snyder FW, Sandberg KR (1983b) Suspensions containing microfibrillated cellulose, US Patent 4,378,381 A, Mar 1983

    Google Scholar 

  • Uetani K, Yano H (2011) Nanofibrillation of wood pulp using a high-speed blender. Biomacromolecules 12:348–353

    Article  CAS  PubMed  Google Scholar 

  • Vartiainen J, Pöhler T, Sirola K, Pylkkänen L, Alenius H, Hokkinen J (2011) Health and environmental safety aspects of friction grinding and spray drying of microfibrillated cellulose. Cellulose 18:775–786

    Article  CAS  Google Scholar 

  • VTT files patent for new bio-based mineral oil barrier technology for food packaging (2016) Bioplastics Magazine. http://www.bioplasticsmagazine.com/en/news/meldungen/2016-02-09-VTT-files-patent-mineral-oil-barrier-technology.php. Accessed 1 Aug 2016

  • WÃ¥gberg L, Norgren GDM, Lindström T, Ankerfors M, Axnas K (2008) The build-up of polyelectrolyte multilayers of microfibrillated cellulose and cationic polyelectrolytes. Langmuir 24:784–795

    Article  PubMed  CAS  Google Scholar 

  • Wang Y (2008) Cellulose fiber dissolution in sodium hydroxide solution at low temperature: dissolution kinetics and solubility improvement. Dissertation, Georgia Institute of Technology

    Google Scholar 

  • Wang B, Sain M (2007a) Dispersion of soybean stock-based nanofiber in a plastic matrix. Polym Int 56(4):538–546

    Article  CAS  Google Scholar 

  • Wang B, Sain M (2007b) Isolation of nanofibers from soybean source and their reinforcing capability on synthetic polymers. Compos Sci Technol 67:2521–2527

    Article  CAS  Google Scholar 

  • Welch LV, Kerekes RJ (1994) Characterization of the PFI mill by the C-factor. APPITA 47(5):387–390

    Google Scholar 

  • Winuprasith T, Suphantharika M (2013) Microfibrillated cellulose from mangosteen (Garcinia mangostana L.) rind: preparation, characterization, and evaluation as an emulsion stabilizer. Food Hydrocoll 32(2):383–394

    Article  CAS  Google Scholar 

  • Xhanari K, Syverud K, Stenius P (2011) Emulsions stabilized by microfibrillated cellulose: the effect of hydrophobization, concentration and O/W ratio. J Dispers Sci Technol 32:447–452

    Article  CAS  Google Scholar 

  • Xu X, Liu F, Jiang L, Zhu JY, Haagenson D, Wiesenborn DP (2013) Cellulose nanocrystals vs. cellulose nanofibrils: a comparative study on their microstructures and effects as polymer reinforcing agents. Appl Mater Interfaces 5:2999–3009

    Article  CAS  Google Scholar 

  • Yano H, Nakahara S (2004) Bio-composites produced from plant microfiber bundles with a nanometer unit web-like network. J Mater Sci 39:1635–1638

    Article  CAS  Google Scholar 

  • Zhang J, Song H, Lin L, Zhuang J, Pang C (2012) Microfibrillated cellulose from bamboo pulp and its properties. Biomass Bioenergy 39:78–83

    Article  CAS  Google Scholar 

  • Zhao Y, Simonsen J, Cavender G, Jung J, Fuchigami LH (2014) Nano-cellulose coatings to prevent damage in foodstuffs. US Patent 20,140,272,013 A1, Sept 2014

    Google Scholar 

  • Zhu JY, Sabo R, Luo X (2011) Integrated production of nano-fibrillated cellulose and cellulosic biofuel (ethanol) by enzymatic fractionation of wood fibers. Green Chem 13:1339–1344

    Article  CAS  Google Scholar 

  • Zimmermann T, Pohler E, Geiger T (2004) Cellulose fibrils for polymer reinforcement. Adv Eng Mater 6(9):754–761

    Article  CAS  Google Scholar 

  • Zimmermann T, Bordeanu N, Strub E (2010) Properties of nanofibrillated cellulose from different raw materials and its reinforcement potential. Carbohydr Polym 79:1086–1093

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sudhagar Mani .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd.

About this chapter

Cite this chapter

Lee, H., Sundaram, J., Mani, S. (2017). Production of Cellulose Nanofibrils and Their Application to Food: A Review. In: Prasad, R., Kumar, V., Kumar, M. (eds) Nanotechnology. Springer, Singapore. https://doi.org/10.1007/978-981-10-4678-0_1

Download citation

Publish with us

Policies and ethics