Skip to main content

Part of the book series: Foundations of Engineering Mechanics ((FOUNDATIONS))

  • 604 Accesses

Abstract

In this section, it is shown how the LPT concept can be extended to finite-dimensional oscillatory chains. The systems under consideration are finite-dimensional analogues of several classical infinite models which were initially used for analysis of such significant physical phenomena as recurrent energy transfer and localization.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ablowitz, M.J., Ladik, J.E.: Nonlinear differential-difference equations and Fourier analysis. J. Math. Phys. 17, 1011 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  • Akhmediev, N.N., Ankiewicz, A.: Solitosns: Nonlinear Pulses and Beams. Chapman and Hall, London (1992)

    Google Scholar 

  • Berman, G.P., Izrailev, F.M.: The Fermi–Pasta–Ulam problem: fifty years of progress. Chaos 15, 15104 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  • Berman, G.P., Kolovsky, A.R.: The limit of stochasticity for a one-dimensional chain of interacting oscillators. Sov. Phys. JETP 60, 1116 (1984)

    Google Scholar 

  • Bogolyubov, N.N., Mitropol’skii Yu.A.: Asymptotic Methods in the Theory of Nonlinear Oscillations, Gordon & Breach, Delhi (1961)

    Google Scholar 

  • Brillouin, L.: Wave Propagation in Periodic Structures. Dover Publications (1946)

    Google Scholar 

  • Budinsky, N., Bountis, T.: Stability of nonlinear modes and chaotic properties of 1D Fermi–Pasta–Ulam lattices. Physica D 8, 445 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  • Burlakov, V.M., Darmanyan, S.A., Pyrkov, V.N.: Modulation instability and recurrence phenomena in anharmonic lattices. Phys. Rev. B 54, 3257 (1996)

    Article  Google Scholar 

  • Chechin, G.M., Novikova, N.V., Abramenko, A.A.: Bushes of vibrational modes for Fermi–Pasta–Ulam chains. Physica D 166, 208 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  • Claude, Ch., Kivshar, YuS, Kluth, O., Spatschek, K.H.: Moving localized modes in nonlinear lattices. Phys. Rev. B 47, 14228 (1993)

    Article  MATH  Google Scholar 

  • Dash, P.C., Patnaik, K.: Nonlinear wave in a diatomic Toda lattice. Phys. Rev. A, 23 (1981)

    Google Scholar 

  • Dauxois, T., Peyrard, M.: Physics of Solitons. Cambridge University Press, Cambridge (2006)

    MATH  Google Scholar 

  • Dauxois, T., Khomeriki, R., Piazza, F., Ruffo, S.: The anti-FPU problem. Chaos 15, 15110 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  • Dodd, R.K., Eilbeck, J.C., Gibbon, J.D., Morris, H.S.: Solitons and Nonlinear Wave Equations. Academic Press Inc., London (1982)

    MATH  Google Scholar 

  • Elliott, J.F.: The characteristic roots of certain real symmetric matrices. Mater thesis, University of Tennessee (1953)

    Google Scholar 

  • Feng, B.-F.: An integrable three particle system related to intrinsic.localized modes. J. Phys. Soc. Jpn. 75, 014401 (2006)

    Article  Google Scholar 

  • Fermi, E., Pasta, J., Ulam, S.: studies of the nonlinear problems. In: Segre, E. (ed.) Collected Papers of Enrico Fermi, p. 978. University of Chicago Press, Chicago (1965)

    Google Scholar 

  • Flach, S., Gorbach, A.V.: Discrete breathers—Advances in theory and applications. Phys. Rep. 467, 1 (2008)

    Article  MATH  Google Scholar 

  • Flach, S., Willis, C.R.: Discrete breathers. Phys. Rep. 295, 181 (1998)

    Article  MathSciNet  Google Scholar 

  • Flach, S., Ivanchenko, M.V., Kanakov, O.I.: q-Breathers and the Fermi-Pasta-Ulam problem. Phys. Rev. Lett. 95, 64102 (2005)

    Article  Google Scholar 

  • Gallavotti, G. (ed.): The Fermi-Pasta-Ulam Problem: A Status Report, vol. 728. Springer, Berlin (2008) (Springer Series Lect. Notes Phys.)

    Google Scholar 

  • Gregory, R.T., Karney, D.: A collection of matrices for testing computational algorithm. Wiley-Interscience (1969)

    Google Scholar 

  • Hajnal, D., Schilling, R.: Delocalization-localization transition due to anharmonicity. Phys. Rev. Lett. 101, 124101 (2008)

    Article  Google Scholar 

  • Henrici, A., Kappeler, T.: Results on normal forms for fpu chains. Commun. Math. Phys. 278, 145 (2008a)

    Article  MathSciNet  MATH  Google Scholar 

  • Henrici, A., Kappeler, T.: Commun. Math. Phys. 278, 145 (2008b)

    Article  Google Scholar 

  • James, G., Kastner, M.: Bifurcations of discrete breathers in a diatomic Fermi–Pasta–Ulam chain. Nonlinearity 20, 631–657 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  • James, G., Noble, P.: Breathers on di-atomic Fermi-Pasta-Ulam lattices. Physica D 196, 124–171 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  • Jensen, S.M.: The nonlinear coherent coupler. IEEE J Quantum Electron QE 18, 1580–1583 (1982)

    Article  Google Scholar 

  • Khusnutdinova, K.R.: Non-linear waves in a double row particle system. Vestnik MGU Math Mech 2, 71–76 (1992)

    MATH  Google Scholar 

  • Khusnutdinova, K.R., Pelinovsky, D.E.: On the exchange of energy in coupled Klein-Gordon equations. Wave Motion 38, 1–10 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  • Kivshar, Y.S., Peyrard, M.: Modulational instabilities in discrete lattices. Phys. Rev. A 46, 3198 (1992)

    Article  Google Scholar 

  • Kosevitch, A.M., Kovalev, A.C.: Introduction to Nonlinear Physical Mechanics. Naukova Dumka, Kiev (1989). (in Russian)

    Google Scholar 

  • Kosevich, YuA, Manevich, L.I., Savin, A.V.: Wandering breathers and self-trapping in weakly coupled nonlinear chains: classical counterpart of macroscopic tunneling quantum dynamics. Phys. Rev. E 77, 046603 (2008)

    Article  MathSciNet  Google Scholar 

  • Kovaleva, A., Manevitch, L.I., Manevitch E.L.: Intense energy transfer and superharmonic resonance in a system of two coupled oscillators. Phys. Rev. E 81(5) (2010)

    Google Scholar 

  • Kruskal, M.D., Zabusky, N.J.: Stroboscopic-perturbation procedure for treating a class of nonlinear wave equations. J. Math. Phys. 5, 231 (1964)

    Article  MathSciNet  Google Scholar 

  • Landau, L.D., Lifshitz, E.M.: Course of Theoretical Physics, vol. 1. Pergamon, Oxford, UK (1960)

    Google Scholar 

  • Lichtenberg, A.J., Livi, R., Oettini, M., Ruffo, S.: Dynamics of oscillator chains. In: Gallavotti, G. (ed.) The Fermi-Pasta-Ulam Problem: A status report, vol. 728. Springer, Berlin (2008)

    Google Scholar 

  • Manevitch, L.I.: The description of localized normal modes in a chain of nonlinear coupled oscillators using complex variables. Nonlinear Dyn. 25, 95 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  • Manevich, L.I.: In: Proceedings of the 8th Confence on Dynamical Systems: Theory and Applications, Lodz, 12–15 Dec 2005 (Poland, 2005), vol. 1, pp. 119–136 (2005)

    Google Scholar 

  • Manevitch, L.I.: In: Awrejcewicz, J., Olejnik, P. (eds.) 8th Conference on Dynamical Systems-Theory and Applications, DSTA-2005, p. 289 (2005)

    Google Scholar 

  • Manevitch, L.I.: New approach to beating phenomenon in coupled nonlinear oscillatory chains. Arch Appl Mech. 301 (2007)

    Google Scholar 

  • Manevitch, L.I.: Vibro-impact models for smooth non-linear systems. In: Ibrahim, R.A., Babitsky, V.I., Okuma, M. (eds.) Lecture Notes in Applied and Computational Mechanics, vol. 44, pp. 191–202. Springer, Berlin (2009)

    Google Scholar 

  • Manevitch, L.I., Gendelman, O.V.: Tractable Models of Solid Mechanics. Springer, Berlin (2011)

    Google Scholar 

  • Manevich, A.I., Manevich, L.I.: The Mechanics of Nonlinear Systems with Internal Resonances. Imperial College Press, London (2005)

    Book  MATH  Google Scholar 

  • Manevitch, L.I., Musienko, A.I.: Limiting phase trajectories and energy exchange between an anharmonic oscillator and external force. Nonlinear Dyn. 58, 633–642 (2009)

    Article  MATH  Google Scholar 

  • Manevitch, L.I., Oshmyan, V.G.: An asymptotic study of the linear vibrations of a stretched beam with concentrated masses and discrete elastic supports. J. Sound Vib. 223(5), 679–691 (1999)

    Article  Google Scholar 

  • Manevitch, L.I., Smirnov, V.V.: In: Indeitsev, D.A. (ed.) Advanced Problem in Mechanics, APM-2007, p. 289. IPME RAS, St.Petersburg (Repino), Russia (2007)

    Google Scholar 

  • Manevitch, L.I., Smirnov, V.V.: In: Awrejcewicz, J., Olejnik, P., Mrozowski, J. (eds.) 9th Conference on Dynamical Systems Theory and Applications, DSTA-2007, p. 301 (2007)

    Google Scholar 

  • Manevitch, L.I., Smirnov, V.V., 9th Conference on dynamical systems theory and applications. In: Awrejcewicz, J., Olejnik, P., Mrozowski, J. (eds.) 301, DSTA-2007, L’od’z, Poland 17–20 Dec 2007 (2007)

    Google Scholar 

  • Manevich, L.I., Smirnov, V.V.: Discrete breathers and intrinsic localized modes in small FPU systems. In: Proceedings of APM 2007: 293, St-Peterburg (2007)

    Google Scholar 

  • Manevitch, L.I., Smirnov, V.V.: Solitons in Macromolecular Systems. Nova Publ, New-York (2008)

    Google Scholar 

  • Manevitch, L.I., Smirnov, V.V.: Limiting phase trajectories and the origin of energy localization in nonlinear oscillatory chains. Phys. Rev. E 82 (2010)

    Google Scholar 

  • Manevich, L.I., Mikhlin, Yu.V., Pilipchuk, V.V.: The Method of Normal Oscillations for Essentially Nonlinear Systems. Nauka, Moscow (1989) (in Russian)

    Google Scholar 

  • Manevitch, L.I., Mikhlin, YuV, Pilipchuk, V.N.: The Normal Vibrations Method For Essentially Nonlinear Systems. Nauka Publ, Moscow (1989). (in Russian)

    Google Scholar 

  • Manevitch, L.I., Kovaleva, A.S., Manevitch, E.L.: Limiting phase trajectories and resonance energy transfere in a system of two coupled oscillators. Math Problems Eng, vol. 2010. doi:10.1155/2010/760479 (2010)

  • Manevitch, L.I., Kovaleva, A.S., Shepelev, D.S.: Non-smooth approximations of the limiting phase trajectories for the duffing oscillator near 1:1 resonance. Accepted for publication in Physica D (2011)

    Google Scholar 

  • Mokrosst, F., Buttner, H.: Thermal conductivity in the diatomic toda lattice. J. Phys. C: Solid State Phys. 16, 4539–4546 (1983)

    Article  Google Scholar 

  • Nayfeh A.H., Mook, D.T.: Nonlinear Oscillations. Wiley, New York (1979)

    Google Scholar 

  • Ovchinnikov, A.A., Erikhman, N.S., Pronin, K.A.: Vibrational-Rotational Excitations in Nonlinear Molecular Systems. Springer, Berlin (2001)

    Book  Google Scholar 

  • Poggi, P., Ruffo, S.: Exact solutions in the FPU oscillator chain. Physica D 103, 251 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  • Rabinovich, M.I., Trubetskov, D.I.: Introduction to the Theory of Oscillations and Waves. Nauka, Moscow (1984). [in Russian]

    MATH  Google Scholar 

  • Rink, B.: Symmetry and resonance in periodic FPU chains. Commun. Math. Phys. 218, 665 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  • Rink, B., Verhulst, F.: Near-integrability of periodic FPU-chains. Phys. A 285, 467 (2000)

    Article  MATH  Google Scholar 

  • Rosenberg, R.M.: On nonlinear vibrations of systems with many degrees of freedom. Adv. Apl. Mech. 9, 156 (1966)

    Google Scholar 

  • Sandusky, K.W., Page, J.B.: Interrelation between the stability of extended normal modes and the existence of intrinsic localized modes in nonlinear lattices with realistic potentials. Phys. Rev. B 50, 866 (1994)

    Article  Google Scholar 

  • Scott A.: Nonlinear Science: Emergence and Dynamics of Coherent Structures. Oxford University Press, Oxford (2003)

    Google Scholar 

  • Smirnov V.V., Manevitch L.I.: Limiting phase trajectories and dynamic transitions in nonlinear periodic systems, Acoust. Phys. 57, 271–276 (2011)

    Google Scholar 

  • Starosvetsky, Y., Manevitch L.I.: Nonstationary regimes in a Duffing oscillator subject to biharmonic forcing near a primary resonance. Phys. Rev. E 83 (2011)

    Google Scholar 

  • Starosvetsky, Y., Manevitch, L.I.: On intense energy exchange and localization in periodic FPU dimer chains, Physica D 264, 66–79 (2013)

    Google Scholar 

  • Toda, M.: Theory of Nonlinear Lattices, vol. 20. Springer, Berlin (1989)

    MATH  Google Scholar 

  • Uzunov, I.M., Muschall, R., Gölles, M., Kivshar, Yuri S., Malomed, B.A., Lederer, F.: Pulse switching in nonlinear fiber directional couplers. Phys. Rev. E 51, 2527–2537 (1995)

    Article  Google Scholar 

  • Vakakis, A.F.: Advanced Nonlinear Strategies for Vibration Mitigation and System Identification, 1st Ed. Springer, Berlin (2010)

    Google Scholar 

  • Vakakis, A.F., Manevitch, L.I., Mikhlin, YuV, Pilipchuk, V.N., Zevin, A.A.: Normal Modes and Localization in Nonlinear Systems. Wiley, New York (1996)

    Book  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leonid I. Manevitch .

Appendix

Appendix

Let us show that the pair of modes \( {\mathbf{V}}_{0i} ,{\mathbf{V}}_{\varepsilon i} \) is orthogonal

$$ {\mathbf{V}}_{0i}^{\text{T}} {\mathbf{V}}_{\varepsilon i} = 0 $$
(4.97)

From the consideration of symmetry, the modes have the following form

$$ \begin{aligned} {\mathbf{V}}_{0i} & = \left[ {\begin{array}{*{20}c} 0 & {X_{2}^{0} } & \cdots & {X_{N + 1}^{0} } & 0 & {( - 1)^{r(i)} X_{2}^{0} } & \cdots & {( - 1)^{r(i)} X_{N + 1}^{0} } \\ \end{array} } \right] \\ {\mathbf{V}}_{\varepsilon i} & = \left[ {\begin{array}{*{20}c} {X_{1}^{\varepsilon } } & {X_{2}^{\varepsilon } } & \cdots & {X_{N + 1}^{\varepsilon } } & {( - 1)^{p(i)} X_{1}^{\varepsilon } } & {( - 1)^{p(i)} X_{2}^{\varepsilon } } & \cdots & {( - 1)^{p(i)} X_{N + 1}^{\varepsilon } ]} \\ \end{array} } \right] \\ \end{aligned} $$
(4.98)

Using perturbation theory, we have shown that

$$ {\text{X}}_{j}^{\varepsilon } = {\text{X}}_{j}^{0} + O(\varepsilon ) $$
(4.99)

where \( X_{j}^{0} \sim\,O\left( 1 \right). \)

Therefore,

$$ \text{sgn} ({X}_{j}^{\varepsilon } ) = \text{sgn} ({X}_{j}^{0} ),j = 2, \quad \dots N + 1 $$
(4.100)

Note that (A4) can be violated when dealing with the mode possessing the nodal points on some of the light particles (i.e., \( {X}_{j}^{0} = 0,j \in [2,\dots, N] \)). However, in this case, the product \( {X}_{j}^{0} {X}_{j}^{\varepsilon } = 0 \) and therefore the disparity in signs do not affect the orthogonality of the modes.

For each mode \( {\mathbf{V}}_{0i} \), we note the two possibilities for the choice of \( r(i) \). To this end, let us consider the signs of \( {X}_{2}^{0} \) and \( {X}_{N + 1}^{0} \). In case \( {X}_{2}^{0} \) and \( {X}_{N + 1}^{0} \) have identical signs, the immobile, heavy masses can be balanced by the oscillating light neighbors only if \( r(i) = 1 \).

Thus,

$$ r(i) = \left\{ {\begin{array}{*{20}c} {1,} & {\text{sgn} \left( {{\text{X}}_{2}^{0} } \right) = \text{sgn} \left( {{X}_{N + 1}^{0} } \right)} \\ {0,} & {\text{sgn} \left( {{X}_{2}^{0} } \right) = - \text{sgn} \left( {{X}_{N + 1}^{0} } \right)} \\ \end{array} } \right. $$
(4.101)

As for the second mode \( {\mathbf{V}}_{\varepsilon i} \), it is obvious that operating on the optical branch of the chain, each oscillating heavy particle should be out-of-phase with its light neighbors. In other words, both the light particles neighboring to any of heavy masses should move in phase. Thus,

$$ p(i) = \left\{ {\begin{array}{*{20}l} {1,} & {\text{sgn} \left( {{X}_{2}^{\varepsilon } } \right) = \text{sgn} \left( {{X}_{N + 1}^{\varepsilon } } \right)} \\ {0,} & {\text{sgn} \left( {{X}_{2}^{\varepsilon } } \right) = - \text{sgn} \left( {{X}_{N + 1}^{\varepsilon } } \right)} \\ \end{array} } \right. $$
(4.102)

From (4.100)–(4.102), it is evident that

$$ r(i) \ne p(i) $$
(4.103)

Thus, the motion of particles for both the modes \( {\mathbf{V}}_{0i} ,{\mathbf{V}}_{\varepsilon i} \) is in-phase on one cell of the dimer chain and out-of-phase on the second one. Accounting for (4.98) and (4.103), it is easy to see that

$$ {\mathbf{V}}_{0i}^{\text{T}} {\mathbf{V}}_{\varepsilon i} = 0 $$
(4.104)

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Cite this chapter

Manevitch, L.I., Kovaleva, A., Smirnov, V., Starosvetsky, Y. (2018). Quasi-One-Dimensional Nonlinear Lattices. In: Nonstationary Resonant Dynamics of Oscillatory Chains and Nanostructures. Foundations of Engineering Mechanics. Springer, Singapore. https://doi.org/10.1007/978-981-10-4666-7_4

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-4666-7_4

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-4665-0

  • Online ISBN: 978-981-10-4666-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics