Skip to main content

Nonlinear Targeted Energy Transfer and Macroscopic Analogue of the Quantum Landau-Zener Effect in Coupled Granular Chains

  • Chapter
  • First Online:
  • 631 Accesses

Part of the book series: Foundations of Engineering Mechanics ((FOUNDATIONS))

Abstract

Resonance is the main mechanism for energy propagation in spatially periodic linear/nonlinear systems. For the case of two weakly coupled identical Hamiltonian oscillators in resonance, any amount of energy imparted to one of the oscillators gets transferred back and forth between these oscillators with a frequency proportional to the coupling.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Anderson, B.P., Kasevich, M.A.: Macroscopic quantum interference from atomic tunnel arrays. Science 282, 1686–1689 (1998)

    Article  Google Scholar 

  • Aubry, S.: Breathers in nonlinear lattices: existence, linear stability and quantization. Physica D 103, 201–250 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  • Aubry, S., Kopidakis, S., Morgante, A.M., Tsironis, G.P.: Analytic conditions for targeted energy transfer between nonlinear oscillators for discrete breathers. Phys. B 296, 222–236 (2001)

    Article  Google Scholar 

  • Binder, P., Abraimov, D., Ustinov, A.V., Flach, S., Zolotaryuk, Y.: Observation of breathers in Josephson ladders. Phys. Rev. Lett. 84, 745–748 (2000)

    Article  Google Scholar 

  • Campbell, D.K., Peyrard, M.: In: Campbell, D.K. (ed.) CHAOS-Soviet American Perspectives on Nonlinear Science. American Institute of Physics, New York (1990)

    Google Scholar 

  • Campbell, D.K., Flach, S., Kivshar, Y.S.: Localizing energy through nonlinearity and discreteness. Phys. Today 57, 43–49 (2004)

    Article  Google Scholar 

  • Edler, J., Pfister, R., Pouthier, V., Falvo, C., Hamm, P.: Direct observation of self-trapped vibrational states in α-helices. Phys. Rev. Lett. 93, 106405 (2004)

    Article  Google Scholar 

  • Eisenberg, H.S., Silberberg, Y., Morandotti, R., Boyd, A.R., Aitchison, J.S.: Discrete spatial optical solitons in waveguide arrays. Phys. Rev. Lett. 81, 3383–3386 (1998)

    Article  Google Scholar 

  • Flach, S., Willis, C.R.: Discrete breathers. Phys. Rep. 295, 181–264 (1998)

    Article  MathSciNet  Google Scholar 

  • Hoogeboom, C., Theocharis, G., Kevrekidis, P.G.: Discrete breathers at the interface between a diatomic and a monoatomic granular chain. Phys. Rev. E 82, 061303 (2010)

    Article  MathSciNet  Google Scholar 

  • Jayaprakash, K.R., Starosvetsky, Y., Vakakis, A.F.: New family of solitary waves in granular dimer chains with no precompression. Phys. Rev. E 83, 036606 (2011a)

    Article  MathSciNet  Google Scholar 

  • Jayaprakash, K.R., Starosvetsky, Y., Vakakis, A.F., Peeters, M., Kerschen, G.: Nonlinear normal modes and band zones in granular chains with no pre-compression. Nonlinear Dyn. 63, 359–385 (2011b)

    Article  MathSciNet  Google Scholar 

  • Job, S., Santibanez, F., Tapia, F., Melo, F.: Wave localization in strongly nonlinear Hertzian chains with mass defect. Phys. Rev. E 80, 025602(R) (2009)

    Article  Google Scholar 

  • Johansson, M., Morgante, A.M., Aubry, S., Kopidakis, G.: Eur. Phys. J. B 29, 279283 (2002)

    Google Scholar 

  • Juanico, B., Sanejouand, Y.-H., Piazza, F., De Los Rios, P.: Discrete breathers in nonlinear network models of proteins. Phys. Rev. Lett. 99, 238104 (2007)

    Article  Google Scholar 

  • Kopidakis, G., Aubry, S.: Intraband discrete breathers in disordered nonlinear systems. I. Delocalization. Physica D 130, 155–186 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  • Kopidakis, G., Aubry, S.: Discrete breathers and delocalization in nonlinear disordered systems. Phys. Rev. Lett. 84, 3236–3239 (2000a)

    Article  MATH  Google Scholar 

  • Kopidakis, G., Aubry, S.: Intraband discrete breathers in disordered nonlinear systems. II. Localization. Physica D 139, 247–275 (2000b)

    Article  MathSciNet  MATH  Google Scholar 

  • Kopidakis, G., Aubry, S., Tsironis, G.P.: Targeted energy transfer through discrete breathers in nonlinear systems. Phys. Rev. Lett. 87, 165501 (2001a)

    Article  Google Scholar 

  • Kopidakis, G., Aubry, S., Tsironis, G.P.: Targeted energy transfer through discrete breathers in nonlinear systems. Phys. Rev. Lett. 87, 165501 (2001b)

    Article  Google Scholar 

  • Kosevich, Y.A., Manevitch, L.I., Savin, A.V.: Energy transfer in coupled nonlinear phononic waveguides: transition from wandering breather to nonlinear self-trapping. J. Phys.: Conf. Ser. 92, 012093 (2007)

    Google Scholar 

  • Kosevich, Y.A., Manevitch, L.I., Savin, A.V.: Wandering breathers and self-trapping in weakly coupled nonlinear chains: classical counterpart of macroscopic tunneling quantum dynamics. Phys. Rev. E 77, 046603 (2008)

    Article  MathSciNet  Google Scholar 

  • Kosevich, Y.A., Manevitch, L.I., Savin, A.V.: Energy transfer in weakly coupled nonlinear oscillator chains: Transition from a wandering breather to nonlinear self-trapping. J. Sound. Vib. 322, 524–531 (2009)

    Article  Google Scholar 

  • Kosevich, Y.A., Manevitch, L.I., Manevitch, E.L.: Vibrational analogue of nonadiabatic Landau–Zener tunneling and a possibility for the creation of a new type of energy trap. Phys. Usp. 53, 1281–1286 (2010)

    Article  Google Scholar 

  • Kovaleva, A., Manevitch, L.I., Kosevich, Y.A.: Fresnel integrals and irreversible energy transfer in an oscillatory system with time-dependent parameters. Phys. Rev. E 83, 026602 (2011)

    Article  Google Scholar 

  • Manevitch, L.I., Kosevich, Y.A., Mane, M., Sigalov, G., Bergman, L.A., Vakakis, A.F.: Towards a new type of energy trap: classical analog of quantum Landau-Zener tunneling. Int. J. Non Linear Mech. 46, 247–252 (2011). doi:10.1016/ijnonlinmec.20.08.01010

  • Manevitch, L.I.: Complex representation of dynamics of coupled nonlinear oscillators. In Mathematical Models of Non-Linear Excitations: Transfer, Dynamics, and Control in Condensed Systems and Other Media, pp. 269–300. Kluwer Academic, Plenum Publishers, New York (1999)

    Google Scholar 

  • Maniadis, P., Aubry, S.: Targeted energy transfer by Fermi resonance. Physica D 202, 200–217 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  • Manley, M.E., Yethiraj, M., Sinn, H., Volz, H.M., Alatas, A., Lashley, J.C., Hults, W.L., Lander, G.H., Smith, J.L.: Formation of a new dynamical mode in α-Uranium observed by inelastic X-ray and neutron scattering. Phys. Rev. Lett. 96, 125501 (2006)

    Article  Google Scholar 

  • Morgante, A.A., Johansson, M., Kopidakis, G., Aubry, S.: Physica D. 162, 53 (2002)

    Google Scholar 

  • Nesterenko, V.F.: Dynamics of Heterogeneous Materials. Springer, Berlin, New York (2001)

    Book  Google Scholar 

  • Razavy, M.: Quantum Theory of Tunneling. World Scientific, Singapore (2003)

    Book  MATH  Google Scholar 

  • Rosam, B., Leo, K., Gluck, M., Keck, F., Korsch, H., Zimmer, F., Kohler, K.: Lifetime of Wannier-Stark states in semiconductor superlattices under strong Zener tunneling to above-barrier bands. Phys. Rev. B 68, 125301 (2003)

    Article  Google Scholar 

  • Sato, M., Sievers, A.J.: Direct observation of the discrete character of intrinsic localized modes in an antiferromagnet. Nature 432, 486–488 (2004)

    Article  Google Scholar 

  • Scott, A.: Nonlinear Science: Emergence and Dynamics of Coherent Structures. Oxford University Press, New York (1999)

    MATH  Google Scholar 

  • Sen, S., Krishna Mohan, T.R.: Dynamics of metastable breathers in nonlinear chains in acoustic vacuum. Phys. Rev. E 79, 036603 (2009)

    Article  Google Scholar 

  • Sias, C., Zenesini, A., Lignier, H., Wimberger, S., Ciampini, D., Morsch, O., Arimondo, E.: Resonantly enhanced tunneling of Bose-Einstein condensates in periodic potentials. Phys. Rev. Lett. 98, 120403 (2007)

    Article  Google Scholar 

  • Sievers, A.J., Takeno, S.: Intrinsic localized modes in anharmonic crystals. Phys. Rev. Lett. 61, 970–973 (1988)

    Article  Google Scholar 

  • Starosvetsky, Y., Vakakis, A.F.: Traveling waves and localized modes in one-dimensional homogeneous granular chains with no pre-compression. Phys. Rev. E 82, 026603 (2010)

    Article  MathSciNet  Google Scholar 

  • Starosvetsky, Y., Jayaprakash, K.R., Vakakis, A.F., Manevitch, L.I.: Effective particles and classification of periodic orbits of homogeneous granular chains with no pre-compression. Phys. Rev. E (in press)

    Google Scholar 

  • Starosvetsky, Y., Hasan, M.A., Vakakis, A.F., Manevitch, L.I.: Strongly nonlinear beat phenomena and energy exchanges in weakly coupled granular chains on elastic foundations. SIAM J. Appl. Math. 72(1), 337–361 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  • Swanson, B.I., Brozik, J.A., Love, S.P., Strouse, G.F., Shreve, A.P., Bishop, A.R., Wang, W.-Z., Salkola, M.I.: Observation of intrinsically localized modes in a discrete low-dimensional material. Phys. Rev. Lett. 82, 3288–3291 (1999)

    Article  Google Scholar 

  • Theocharis, G., Kavousanakis, M., Kevrekidis, P.G., Daraio, C., Porter, M.A., Kevrekidis, I.G.: Localized breathing modes in granular crystals with defects. Phys. Rev. E 80, 066601 (2009)

    Article  Google Scholar 

  • Trias, E., Mazo, J.J., Orlando, T.P.: Discrete breathers in nonlinear lattices: experimental detection in a Josephson array. Phys. Rev. Lett. 84, 741–744 (2000)

    Article  Google Scholar 

  • Vakakis, A.F., Gendelman, O., Bergman, L.A., McFarland, D.M., Kerschen, G., Lee, Y.S.: Nonlinear targeted energy transfer in mechanical and structural systems. Springer, Berlin, New York (2008)

    MATH  Google Scholar 

  • Zener, C.: Non-adiabatic crossing of energy levels. Proc. R. Soc. Lond. A Math. Phys. Sci. 137, 696–702 (1932)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leonid I. Manevitch .

Appendix

Appendix

In this appendix, we develop the approximate expression of the slow flow modulation equation shown in Eq. (11.9). Rewriting Eq. (11.8), which shows the slow/fast partition of the dynamics of the system:

$$ \begin{aligned} & \frac{{\partial \psi_{n0}^{x} }}{{\partial \tau_{0} }} - i\psi_{n0}^{x} = 0\, \Rightarrow \,\psi_{n0}^{x} = \varphi_{no}^{x} \left( {\tau_{1} } \right)\exp \left( {i\tau_{0} } \right) \\ & \frac{{\partial \psi_{n0}^{y} }}{{\partial \tau_{0} }} - i\psi_{n0}^{y} = 0\, \Rightarrow \,\psi_{n0}^{y} = \varphi_{no}^{y} \left( {\tau_{1} } \right)\exp \left( {i\tau_{0} } \right) \\ \end{aligned} $$
(11.37)

Proceeding to the \( O(\varepsilon^{3/2} ) \) approximation, we derive the following system:

$$ \begin{aligned} \frac{{\partial \psi_{n0}^{x} }}{{\partial \tau_{1} }} + \frac{{\partial \psi_{n1}^{x} }}{{\partial \tau_{0} }} - i\psi_{n1}^{x} & = \alpha \left\{ {\frac{{\psi_{{\left( {n - 1} \right)0}}^{x} - \psi_{{\left( {n - 1} \right)0}}^{x*} - \psi_{\left( n \right)0}^{x} + \psi_{\left( n \right)0}^{x*} }}{2i}} \right\}_{ + }^{3/2} \\&-\, \alpha \left\{ {\frac{{\psi_{\left( n \right)0}^{x} - \psi_{\left( n \right)0}^{x*} - \psi_{{\left( {n + 1} \right)0}}^{x} + \psi_{{\left( {n + 1} \right)0}}^{x*} }}{2i}} \right\}_{ + }^{3/2} - i\lambda \left[ {\psi_{\left( n \right)0}^{y} - \psi_{\left( n \right)0}^{y*} } \right] \\ \frac{{\partial \psi_{n0}^{y} }}{{\partial \tau_{1} }} + \frac{{\partial \psi_{n1}^{y} }}{{\partial \tau_{0} }} - i\psi_{n1}^{y} & = \alpha \left\{ {\frac{{\psi_{{\left( {n - 1} \right)0}}^{y} - \psi_{{\left( {n - 1} \right)0}}^{y*} - \psi_{\left( n \right)0}^{y} + \psi_{\left( n \right)0}^{y*} }}{2i}} \right\}_{ + }^{3/2} \\ &-\, \alpha \left\{ {\frac{{\psi_{\left( n \right)0}^{y} - \psi_{\left( n \right)0}^{y*} - \psi_{{\left( {n + 1} \right)0}}^{y} + \psi_{{\left( {n + 1} \right)0}}^{y*} }}{2i}} \right\}_{ + }^{3/2} - i\lambda \left[ {\psi_{\left( n \right)0}^{x} - \psi_{\left( n \right)0}^{x*} } \right] \\ \end{aligned} $$
(11.38)

Introducing (11.37) into (11.38) yields the following:

$$ \begin{aligned} & \frac{{\partial \left[ {\varphi_{n0}^{x} \exp \left( {i\tau_{0} } \right)} \right]}}{{\partial \tau_{1} }} + \frac{{\partial \psi_{n1}^{x} }}{{\partial \tau_{0} }} - i\psi_{n1}^{x} \\ & \quad = \alpha \left\{ {\frac{{\varphi_{{\left( {n - 1} \right)0}}^{x} \exp \left( {i\tau_{0} } \right) - \varphi_{{\left( {n - 1} \right)0}}^{x*} \exp \left( { - i\tau_{0} } \right) - \varphi_{\left( n \right)0}^{x} \exp \left( {i\tau_{0} } \right) + \varphi_{\left( n \right)0}^{x*} \exp \left( { - i\tau_{0} } \right)}}{2i}} \right\}_{ + }^{3/2} \\ & \quad -\, \alpha \left\{ {\frac{{\varphi_{\left( n \right)0}^{x} \exp \left( {i\tau_{0} } \right) - \varphi_{\left( n \right)0}^{x*} \exp \left( { - i\tau_{0} } \right) - \varphi_{{\left( {n + 1} \right)0}}^{x} \exp \left( {i\tau_{0} } \right) + \varphi_{{\left( {n + 1} \right)0}}^{x*} \exp \left( { - i\tau_{0} } \right)}}{2i}} \right\}_{ + }^{3/2} \\ & \quad - \,i\lambda \left[ {\phi_{n0}^{y} \exp \left( {i\tau_{0} } \right) - \phi_{n0}^{y*} \exp \left( { - i\tau_{0} } \right)} \right] \\ \end{aligned} $$
$$ \begin{aligned} & \frac{{\partial \left[ {\varphi_{n0}^{y} \exp \left( {i\tau_{0} } \right)} \right]}}{{\partial \tau_{1} }} + \frac{{\partial \left[ {\psi_{n1}^{y} } \right]}}{{\partial \tau_{0} }} - i\psi_{n1}^{y} \\ & \quad = \alpha \left\{ {\frac{{\varphi_{{\left( {n - 1} \right)0}}^{y} \exp \left( {i\tau_{0} } \right) - \varphi_{{\left( {n - 1} \right)0}}^{y*} \exp \left( { - i\tau_{0} } \right) - \varphi_{\left( n \right)0}^{y} \exp \left( {i\tau_{0} } \right) + \varphi_{\left( n \right)0}^{y*} \exp \left( { - i\tau_{0} } \right)}}{2i}} \right\}_{ + }^{3/2} \\ & \quad -\, \alpha \left\{ {\frac{{\varphi_{\left( n \right)0}^{y} \exp \left( {i\tau_{0} } \right) - \varphi_{\left( n \right)0}^{y*} \exp \left( { - i\tau_{0} } \right) - \varphi_{{\left( {n + 1} \right)0}}^{y} \exp \left( {i\tau_{0} } \right) + \varphi_{{\left( {n + 1} \right)0}}^{y*} \exp \left( { - i\tau_{0} } \right)}}{2i}} \right\}_{ + }^{3/2} \\ & \quad -\, i\lambda \left[ {\phi_{n0}^{x} \exp \left( {i\tau_{0} } \right) - \phi_{n0}^{x*} \exp \left( { - i\tau_{0} } \right)} \right] \\ \end{aligned} $$
(11.39)

Upon imposing solvability conditions in (11.39), yields the following slow flow, i.e., the system of modulation equations in the slow timescale governing the (slow) evolutions of the complex envelopes in (11.37):

$$ \begin{aligned} \frac{{\partial \varphi_{n0}^{x} }}{{\partial \tau_{1} }} & = \alpha \left\{ {\frac{{\varphi_{{\left( {n - 1} \right)0}}^{x} \exp \left( {i\tau_{0} } \right) - \varphi_{{\left( {n - 1} \right)0}}^{x*} \exp \left( { - i\tau_{0} } \right) - \varphi_{\left( n \right)0}^{x} \exp \left( {i\tau_{0} } \right) + \varphi_{\left( n \right)0}^{x*} \exp \left( { - i\tau_{0} } \right)}}{2i}} \right\}_{ + }^{3/2} \\ & \times\,\exp ( - i\tau_{0} ) \\ & -\, \alpha \left\{ {\frac{{\varphi_{\left( n \right)0}^{x} \exp \left( {i\tau_{0} } \right) - \varphi_{\left( n \right)0}^{x*} \exp \left( { - i\tau_{0} } \right) - \varphi_{{\left( {n + 1} \right)0}}^{x} \exp \left( {i\tau_{0} } \right) + \varphi_{{\left( {n + 1} \right)0}}^{x*} \exp \left( { - i\tau_{0} } \right)}}{2i}} \right\}_{ + }^{3/2} \\ & \times\,\exp ( - i\tau_{0} ) - i\lambda \left[ {\phi_{n0}^{y} \exp \left( {i\tau_{0} } \right) - \phi_{n0}^{y*} \exp \left( { - i\tau_{0} } \right)} \right]\exp ( - i\tau_{0} ) \\ \end{aligned} $$
$$ \begin{aligned} \frac{{\partial \varphi_{n0}^{y} }}{{\partial \tau_{1} }} & = a\left\{ {\frac{{\varphi_{{\left( {n - 1} \right)0}}^{y} \exp \left( {i\tau_{0} } \right) - \varphi_{{\left( {n - 1} \right)0}}^{y*} \exp \left( { - i\tau_{0} } \right) - \varphi_{\left( n \right)0}^{y}\exp \left( {i\tau_{0} } \right) + \varphi_{\left( n \right)0}^{y*} \exp \left( { - i\tau_{0} } \right)}}{2i}} \right\}_{ + }^{3/2} \\ &\times\, \exp ( - i\tau_{0} )\\ &-\, \alpha \left\{ {\frac{{\varphi_{\left( n \right)0}^{y} \exp \left( {i\tau_{0} } \right) - \varphi_{\left( n \right)0}^{y*} \exp \left( { - i\tau_{0} } \right) - \varphi_{{\left( {n + 1} \right)0}}^{y} \exp \left( {i\tau_{0} } \right) + \varphi_{{\left( {n + 1} \right)0}}^{y*} \exp \left( { - i\tau_{0} } \right)}}{2i}} \right\}_{ + }^{3/2} \\ &\times\,\exp ( - i\tau_{0} ) - i\lambda \left[ {\phi_{n0}^{x} \exp \left( {i\tau_{0} } \right) - \phi_{n0}^{x*} \exp \left( { - i\tau_{0} } \right)} \right]\exp ( - i\tau_{0} ) \\ \end{aligned} $$
(11.40)

To evaluate the non-smooth terms in (11.40), we follow (Starosvetsky et al. 2012) and introduce the Fourier expansions:

$$ \begin{aligned} F_{{\left( {n - 1} \right)0}}^{x} & \equiv \varphi_{{\left( {n - 1} \right)0}}^{x} - \varphi_{n0}^{x} = \left| {F_{{\left( {n - 1} \right)0}}^{x} } \right|\exp \left( {i\theta_{n - 1}^{x} } \right),\quad F_{\left( n \right)0}^{x} \equiv \varphi_{n0}^{x} - \varphi_{{\left( {n + 1} \right)0}}^{x} = \left| {F_{\left( n \right)0}^{x} } \right|\exp \left( {i\theta_{n}^{x} } \right) \\ F_{{\left( {n - 1} \right)0}}^{y} & \equiv \varphi_{{\left( {n - 1} \right)0}}^{y} - \varphi_{n0}^{y} = \left| {F_{{\left( {n - 1} \right)0}}^{y} } \right|\exp \left( {i\theta_{n - 1}^{y} } \right),\quad F_{\left( n \right)0}^{y} \equiv \varphi_{n0}^{y} - \varphi_{{\left( {n + 1} \right)0}}^{y} = \left| {F_{\left( n \right)0}^{y} } \right|\exp \left( {i\theta_{n}^{y} } \right) \\ \end{aligned} $$
(11.41)

which when substituted into the non-smooth terms on the right-hand sides of the slow flow (11.40) lead to the following expressions:

$$ \begin{aligned} \left\{ {\frac{{F_{{\left( {n - 1} \right)0}}^{x} \exp \left( {i\tau_{0} } \right) - F_{(n - 1)0}^{x*} \exp \left( { - i\tau_{0} } \right)}}{2i}} \right\}_{ + }^{3/2} &= \left| {F_{{\left( {n - 1} \right)0}}^{x} } \right|^{3/2} \left\{ {\sin (\tau_{0} + \theta_{n - 1}^{x} )} \right\}_{ + }^{3/2} \\ &= \left| {F_{{\left( {n - 1} \right)0}}^{x} } \right|^{3/2} \left\{ {\cos\Phi_{n - 1}^{x} } \right\}_{ + }^{3/2} \\ \left\{ {\frac{{F_{\left( n \right)0}^{x} \exp \left( {i\tau_{0} } \right) - F_{(n)0}^{x*} \exp \left( { - i\tau_{0} } \right)}}{2j}i} \right\}_{ + }^{3/2} &= \left| {F_{\left( n \right)0}^{x} } \right|^{3/2} \left\{ {\sin (\tau_{0} + \theta_{n}^{x} )} \right\}_{ + }^{3/2} \\ &= \left| {F_{\left( n \right)0}^{x} } \right|^{3/2} \left\{ {\cos\Phi_{n}^{x} } \right\}_{ + }^{3/2} \\ \left\{ {\frac{{F_{{\left( {n - 1} \right)0}}^{y} \exp \left( {i\tau_{0} } \right) - F_{(n - 1)0}^{y*} \exp \left( { - i\tau_{0} } \right)}}{2i}} \right\}_{ + }^{3/2} &= \left| {F_{{\left( {n - 1} \right)0}}^{y} } \right|^{3/2} \left\{ {\sin (\tau_{0} + \theta_{n - 1}^{y} )} \right\}_{ + }^{3/2} \\ &= \left| {F_{{\left( {n - 1} \right)0}}^{y} } \right|^{3/2} \left\{ {\cos\Phi_{n - 1}^{y} } \right\}_{ + }^{3/2} \\ \left\{ {\frac{{F_{\left( n \right)0}^{y} \exp \left( {i\tau_{0} } \right) - F_{(n)0}^{y*} \exp \left( { - i\tau_{0} } \right)}}{2i}} \right\}_{ + }^{3/2} &= \left| {F_{\left( n \right)0}^{y} } \right|^{3/2} \left\{ {\sin (\tau_{0} + \theta_{n}^{y} )} \right\}_{ + }^{3/2} \\ &= \left| {F_{\left( n \right)0}^{y} } \right|^{3/2} \left\{ {\cos\Phi_{n}^{y} } \right\}_{ + }^{3/2} \\ \end{aligned} $$
(11.42)

where \( \Phi_{k}^{x,y} + \frac{\pi }{2} = \tau_{0} + \theta_{k}^{x,y} \). Substituting (11.42) into (11.40) and performing averaging with respect to the fast timescale \( \tau_{0} \) yields the following averaged slow flow equations:

$$ \begin{aligned} \frac{{\partial \varphi_{n0}^{x} }}{{\partial \tau_{1} }} & = \left( {\alpha /2\pi } \right)\left\{ {\left| {F_{{\left( {n - 1} \right)0}}^{x} } \right|^{3/2} \exp \left[ {i\left( {\theta_{n - 1}^{x} - \pi /2} \right)} \right]\,\oint\limits_{2\pi } {\left\{ {\cos\Phi_{n - 1}^{x} } \right\}_{ + }^{3/2} \exp ( - i\Phi_{n - 1}^{x} )} \,\text{d}\Phi_{n - 1}^{x} } \right. \\ & \quad - \,\left. {\left| {F_{\left( n \right)0}^{x} } \right|^{3/2} \exp \left[ {i\left( {\theta_{n}^{x} - \pi /2} \right)} \right]\,\oint\limits_{2\pi } {\left\{ {\cos\Phi_{n}^{x} } \right\}_{ + }^{3/2} \exp ( - i\Phi_{n}^{x} )} \,\text{d}\Phi_{n}^{x} } \right\} \\ & \quad + \,\left( {\lambda /\pi } \right)\exp ( - i\pi /2)\,\oint\limits_{2\pi } {\Phi_{n0}^{y} \left\{ {\cos \left( {\Phi_{n}^{y} - \theta_{n}^{y} } \right)} \right\}\exp \left\{ { - i\left( {\Phi_{n}^{y} - \theta_{n}^{y} } \right)} \right\}} \,\text{d}\left( {\Phi_{n}^{y} - \theta_{n}^{y} } \right) \\ \frac{{\partial \varphi_{n0}^{y} }}{{\partial \tau_{1} }} & = \left( {\alpha /2\pi } \right)\left\{ {\left| {F_{{\left( {n - 1} \right)0}}^{y} } \right|^{3/2} \exp \left[ {i\left( {\theta_{n - 1}^{y} - \pi /2} \right)} \right]\,\oint\limits_{2\pi } {\left\{ {\cos\Phi_{n - 1}^{y} } \right\}_{ + }^{3/2} \exp ( - i\Phi_{n - 1}^{y} )} \,\text{d}\Phi_{n - 1}^{y} } \right. \\ & \quad - \,\left. {\left| {F_{\left( n \right)0}^{y} } \right|^{3/2} \exp \left[ {i\left( {\theta_{n}^{y} - \pi /2} \right)} \right]\,\oint\limits_{2\pi } {\left\{ {\cos\Phi_{n}^{y} } \right\}_{ + }^{3/2} \exp ( - i\Phi_{n}^{y} )} \,\text{d}\Phi_{n}^{y} } \right\} \\ & \quad + \,\left( {\lambda /\pi } \right)\exp ( - i\pi /2)\,\oint\limits_{2\pi } {\Phi_{n0}^{x} \left\{ {\cos \left( {\Phi_{n}^{x} - \theta_{n}^{x} } \right)} \right\}\exp \left\{ { - i\left( {\Phi_{n}^{x} - \theta_{n}^{x} } \right)} \right\}} \,\text{d}\left( {\Phi_{n}^{x} - \theta_{n}^{x} } \right) \\ \end{aligned} $$
(11.43)

Using Fourier expansion, retaining only the leading-order harmonics, and rearranging terms yields the following averaged slow flow system:

$$ \begin{aligned} & i\frac{{\partial \varphi_{n0}^{x} }}{{\partial \tau_{1} }} = \tilde{\alpha }\left( {F_{{\left( {n - 1} \right)0}}^{x} \left| {F_{{\left( {n - 1} \right)0}}^{x} } \right|^{1/2} - F_{\left( n \right)0}^{x} \left| {F_{\left( n \right)0}^{x} } \right|^{1/2} } \right) + \tilde{\lambda }\varphi_{n0}^{y} \\ & i\frac{{\partial \varphi_{n0}^{y} }}{{\partial \tau_{1} }} = \tilde{\alpha }\left( {F_{{\left( {n - 1} \right)0}}^{y} \left| {F_{{\left( {n - 1} \right)0}}^{y} } \right|^{1/2} - F_{\left( n \right)0}^{y} \left| {F_{\left( n \right)0}^{y} } \right|^{1/2} } \right) + \tilde{\lambda }\varphi_{n0}^{x} \\ \end{aligned} $$
(11.44)

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Cite this chapter

Manevitch, L.I., Kovaleva, A., Smirnov, V., Starosvetsky, Y. (2018). Nonlinear Targeted Energy Transfer and Macroscopic Analogue of the Quantum Landau-Zener Effect in Coupled Granular Chains. In: Nonstationary Resonant Dynamics of Oscillatory Chains and Nanostructures. Foundations of Engineering Mechanics. Springer, Singapore. https://doi.org/10.1007/978-981-10-4666-7_11

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-4666-7_11

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-4665-0

  • Online ISBN: 978-981-10-4666-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics