Archaeal Chaperonins: A Cornucopia of Information and Tools to Understand the Human Chaperoning System and Its Diseases

  • Alberto J. L. Macario
  • Everly Conway de Macario
Part of the Heat Shock Proteins book series (HESP, volume 11)


The chaperoning system in organisms across Archaea, Bacteria, and Eukarya encompasses a wide range of complexities. This range extends from the very simple, consisting of a few genes-proteins in the most primitive archaea to the extremely complex like the one in humans (made of many chaperones, co-chaperones, and chaperone cofactors and close interactors/receptors) and including various degrees of complexity in between. Diseases caused by defects in the chaperoning system, named chaperonopathies, are important because many are widespread and frequent and can be life threatening. Chaperonopathies are genetic or acquired. The former are caused by mutations of chaperone genes, whereas the acquired chaperonopathies are typically caused by posttranslational modifications of the chaperone proteins. In both instances, the affected chaperones are nonfunctional, or function incorrectly (e.g., gain of function), or their levels/functioning is increased or decreased. Little is known on the impact of mutations or posttranslational modifications on the properties of the chaperone molecule or on its chaperoning functions. Studies are hindered by the extreme complexity of the chaperoning machines and networks in humans and by the scarcity of experimental models. Here, we report on some archaeal chaperoning systems, focusing on the chaperonins only, which are suitable for standardizing experimental models mimicking the human situations observed in chaperonopathies. We discuss archaeal chaperonins that are similar to those of humans and present an illustrative example of the use of one of these archaeal chaperonins to elucidate the molecular abnormalities generated by a pathogenic mutation in a human chaperonin subunit that causes neuropathy.


Archaeal chaperonins of Group II Archaeal chaperonins of Group I Chaperonin subunits Chaperoning system Methanosarcina acetivorans Pyrococcus furiosus Chaperonopathies Mutation Posttranslational modification CCT5 GroEL GroES 



The authors were partially supported by the Institute of Marine and Environmental Technology (IMET), Baltimore, MD, USA; and by the Euro-Mediterranean Institute of Science and Technology (IEMEST), Palermo, Italy. This is IMET contribution number IMET 16-193.


  1. Bouhouche A, Benomar A, Bouslam N, Chkili T, Yahyaoui M (2006) Mutation in the epsilon subunit of the cytosolic chaperonin-containing t-complex peptide-1 (Cct5) gene causes autosomal recessive mutilating sensory neuropathy with spastic paraplegia. J Med Genet 43(5):441–443.Epub 2006 Jan 6. PMID: 16399879.;
  2. Chaston JJ, Smits C, Aragão D, Wong AS, Ahsan B, Sandin S, Molugu SK, Molugu SK, Bernal RA, Stock D, Stewart AG (2016) Structural and functional insights into the evolution and stress adaptation of Type II chaperonins. Structure 24(3):364–374. doi: 10.1016/j.str.2015.12.016. Epub 2016 Feb 4. PMID: 26853941CrossRefPubMedGoogle Scholar
  3. Conway de Macario E, Maeder DL, Macario AJL (2003) Breaking the mould: archaea with all four chaperoning systems. Biochem Biophys Res Commun 301(4):811–812. No abstract available. PMID: 12589784CrossRefPubMedGoogle Scholar
  4. Deppenmeier U, Johann A, Hartsch T, Merkl R, Schmitz RA, Martinez-Arias R, Henne A, Wiezer A, Bäumer S, Jacobi C, Brüggemann H, Lienard T, Christmann A, Bömeke M, Steckel S, Bhattacharyya A, Lykidis A, Overbeek R, Klenk HP, Gunsalus RP, Fritz HJ, Gottschalk G (2002) The genome of Methanosarcina mazei: evidence for lateral gene transfer between bacteria and archaea. J Mol Microbiol Biotechnol 4(4):453–461. PMID: 12125824PubMedGoogle Scholar
  5. Figueiredo L, Klunker D, Ang D, Naylor DJ, Kerner MJ, Georgopoulos C, Hartl FU, Hayer-Hartl M (2004) Functional characterization of an archaeal GroEL/GroES chaperonin system: significance of substrate encapsulation. J Biol Chem 279(2):1090–1099. Epub 2003 Oct 23. PMID: 14576149CrossRefPubMedGoogle Scholar
  6. Galagan JE, Nusbaum C, Roy A, Endrizzi MG, Macdonald P, FitzHugh W, Calvo S, Engels R, Smirnov S, Atnoor D, Brown A, Allen N, Naylor J, Stange-Thomann N, DeArellano K, Johnson R, Linton L, McEwan P, McKernan K, Talamas J, Tirrell A, Ye W, Zimmer A, Barber RD, Cann I, Graham DE, Grahame DA, Guss AM, Hedderich R, Ingram-Smith C, Kuettner HC, Krzycki JA, Leigh JA, Li W, Liu J, Mukhopadhyay B, Reeve JN, Smith K, Springer TA, Umayam LA, White O, White RH, Conway de Macario E, Ferry JG, Jarrell KF, Jing H, Macario AJL, Paulsen I, Pritchett M, Sowers KR, Swanson RV, Zinder SH, Lander E, Metcalf WW, Birren B (2002) The genome of M. acetivorans reveals extensive metabolic and physiological diversity. Genome Res 12(4):532–542. PMID: 11932238CrossRefPubMedPubMedCentralGoogle Scholar
  7. Hirtreiter AM, Calloni G, Forner F, Scheibe B, Puype M, Vandekerckhove J, Mann M, Hartl FU, Hayer-Hartl M (2009) Differential substrate specificity of group I and group II chaperonins in the archaeon Methanosarcina mazei. Mol Microbiol 74(5):1152–1168. doi:  10.1111/j.1365-2958.2009.06924.x. Epub 2009 Oct 15. PMID: 19843217;
  8. Klunker D, Haas B, Hirtreiter A, Figueiredo L, Naylor DJ, Pfeifer G, Müller V, Deppenmeier U, Gottschalk G, Hartl FU, Hayer-Hartl M (2003) Coexistence of group I and group II chaperonins in the archaeon Methanosarcina mazei. J Biol Chem 278(35):33256–33267. Epub 2003 Jun 9. PMID: 12796498CrossRefPubMedGoogle Scholar
  9. Kumar CM, Mande SC, Mahajan G (2015) Multiple chaperonins in bacteria—novel functions and non-canonical behaviors. Cell Stress Chaperones 20(4):555–574. doi: 10.1007/s12192-015-0598-8. Epub 2015 May 20. Review. PMID: 25986150CrossRefPubMedPubMedCentralGoogle Scholar
  10. Large AT, Lund PA (2009) Archaeal chaperonins. Front Biosci (Landmark Ed) 14:1304–1324. Review. PMID: 19273132CrossRefGoogle Scholar
  11. Macario AJL, Cappello F, Zummo G, Conway de Macario E (2010) Chaperonopathies of senescence and the scrambling of interactions between the chaperoning and the immune systems. Ann N Y Acad Sci 1197:85–93. doi: 10.1111/j.1749-6632.2010.05187.x. Review. PMID: 20536837CrossRefPubMedGoogle Scholar
  12. Macario AJL, Conway de Macario E (1999) The archaeal molecular chaperone machine: peculiarities and paradoxes. Genetics 152(4):1277–1283. Review. PMID: 10430558PubMedPubMedCentralGoogle Scholar
  13. Macario AJL, Conway de Macario E (2005) Sick chaperones, cellular stress, and disease. N Engl J Med 353(14):1489–1501. Review. No abstract available. PMID: 16207851CrossRefPubMedGoogle Scholar
  14. Macario AJL, Conway de Macario E (2007) Chaperonopathies by defect, excess, or mistake. Ann N Y Acad Sci 1113:178–191. Epub 2007 May 4. Review. PMID: 17483209CrossRefPubMedGoogle Scholar
  15. Macario AJL, Conway de Macario E (2009) The chaperoning system: physiology and pathology. Exp Med Rev 2-3:9–21Google Scholar
  16. Macario AJL, Conway de Macario E, Cappello F (2013) The chaperonopathies. In: Diseases with defective molecular chaperones. Springer, Dordrecht. Google Scholar
  17. Macario AJL, Lange M, Ahring BK, Conway de Macario E (1999) Stress genes and proteins in the archaea. Microbiol Mol Biol Rev 63(4):923–967. table of contents. Review. PMID: 10585970PubMedPubMedCentralGoogle Scholar
  18. Macario AJL, Malz M, Conway de Macario E (2004) Evolution of assisted protein folding: the distribution of the main chaperoning systems within the phylogenetic domain archaea. Front Biosci 9:1318–1332. Review. PMID: 14977547CrossRefPubMedGoogle Scholar
  19. Maeder DL, Macario AJL, Conway de Macario E (2005) Novel chaperonins in a prokaryote. J Mol Evol 60(3):409–416. PMID: 15871051CrossRefPubMedGoogle Scholar
  20. Min W, Angileri F, Luo H, Lauria A, Shanmugasundaram M, Almerico AM, Cappello F, Conway de Macario E, Lednev IK, Macario AJL, Robb FT (2014) A human CCT5 gene mutation causing distal neuropathy impairs hexadecamer assembly in an archaeal model. Sci Rep 4:6688. doi: 10.1038/srep06688. PMID: 25345891CrossRefPubMedPubMedCentralGoogle Scholar
  21. Mukherjee K, Conway de Macario E, Macario AJL, Brocchieri L (2010) Chaperonin genes on the rise: new divergent classes and intense duplication in human and other vertebrate genomes. BMC Evol Biol 10:64. doi: 10.1186/1471-2148-10-64. PMID: 20193073CrossRefPubMedPubMedCentralGoogle Scholar
  22. Shah R, Large AT, Ursinus A, Lin B, Gowrinathan P, Martin J, Lund PA (2016) Replacement of GroEL in Escherichia coli by the group II chaperonin from the archaeon Methanococcus maripaludis. J Bacteriol. pii: JB.00317-16. [Epub ahead of print] PMID: 27432832Google Scholar
  23. Techtmann SM, Robb FT (2010) Archaeal-like chaperonins in bacteria. Proc Natl Acad Sci U S A 107(47):20269–20274. doi: 10.1073/pnas.1004783107. Epub 2010 Nov 5. PMID: 21057109CrossRefPubMedPubMedCentralGoogle Scholar
  24. Zako T, Sahlan M, Fujii S, Yamamoto YY, Tai PT, Sakai K, Maeda M, Yohda M (2016) Contribution of the C-terminal region of a group II chaperonin to its interaction with prefoldin and substrate transfer. J Mol Biol 428(11):2405–2417. doi: 10.1016/j.jmb.2016.04.006. Epub 2016 Apr 11. PMID: 27079363CrossRefPubMedGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2017

Authors and Affiliations

  • Alberto J. L. Macario
    • 1
    • 2
    • 3
  • Everly Conway de Macario
    • 1
    • 2
  1. 1.Department of Microbiology and Immunology, School of MedicineUniversity of Maryland at BaltimoreBaltimoreUSA
  2. 2.Institute of Marine and Environmental Technology (IMET)BaltimoreUSA
  3. 3.Euro-Mediterranean Institute of Science and Technology (IEMEST)PalermoItaly

Personalised recommendations