Skip to main content

Multiple Chaperonins in Cyanobacteria: Why One Is Not Enough!

  • Chapter
  • First Online:
Prokaryotic Chaperonins

Part of the book series: Heat Shock Proteins ((HESP,volume 11))

  • 490 Accesses

Abstract

The changing environmental conditions in diverse habitats of cyanobacteria result in adaptive evolution involving both genetic and physiological modulation in order to cope up with extreme environments. One of the major common factors observed under different extreme conditions is denaturation of proteins, and accumulation of denatured proteins in the cells would result in lethality. Cells prevent accumulation of denatured proteins by synthesizing heat shock proteins, which function as chaperones and/or proteases. In cyanobacteria, the chaperonins or the Hsp60 family of proteins are the most predominant HSPs, unlike DnaK or the Hsp70 family in most other bacteria. Most cyanobacterial species have two groEL genes, one present as a part of a bicistronic groESL operon and the other as a monocistronic groEL2/cpn60 gene. Both the genes have been found to be essential for cyanobacterial growth, with groEL2 being dispensable in a few cyanobacterial species under ambient growth temperatures. The synthesis of the two proteins was induced in response to not only heat stress but several other abiotic stresses, suggesting a more global role for the chaperonins in cyanobacteria. Their expression was regulated mainly through the repressor protein HrcA which bound to the CIRCE element overlapping with the promoter region, with other regulatory elements, such as the K-box and H-box also playing a role during heat and/or light stresses. The two chaperonins exhibited differences in their biochemical activities, which possibly reflected on their distinct physiological roles. The cyanobacterial GroEL were distinct from most other bacterial GroEL in being able to function optimally in a GroES- and ATP-independent manner. Taken together, the multiple cyanobacterial Hsp60 proteins and their cis and trans regulation upon varying physiological conditions provide an in-depth insight into how the ancient chaperonins might have evolved, functioned, and contributed toward adaptive evolution and diversification of the more modern bacteria.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Agrawal C, Sen S, Singh S, Rai S, Singh PK, Singh VK, Rai LC (2014) Comparative proteomics reveals association of early accumulated proteins in conferring butachlor tolerance in three N2-fixing Anabaena spp. J Proteome 96:271–290

    Article  CAS  Google Scholar 

  • Apte SK, Fernandes T, Badran H, Ballal A (1998) Expression and possible role of stress-responsive proteins in Anabaena. J Biosci 23:399–406

    Article  CAS  Google Scholar 

  • Asadulghani, Suzuki Y, Nakamoto H (2003) Light plays a key role in the modulation of heat shock response in the cyanobacterium Synechocystis sp PCC 6803. Biochem Biophys Res Commun 306:872–879

    Article  CAS  PubMed  Google Scholar 

  • Berman-Frank I, Lundgren P, Chen YB, Kupper H, Kolber Z, Bergman B, Falkowski P (2001) Segregation of nitrogen fixation and oxygenic photosynthesis in the marine cyanobacterium Trichodesmium. Science 294:1534–1537

    Article  CAS  PubMed  Google Scholar 

  • Borbely G, Suranyi G, Korcz A, Palfi Z (1985) Effect of heat shock on protein synthesis in the cyanobacterium Synechococcus sp. strain PCC 6301. J Bacteriol 161:1125–1130

    CAS  PubMed  PubMed Central  Google Scholar 

  • Brock TD (1973) Evolutionary and ecological aspects of the cyanophytes. In: Carr NG, Whitton BA (eds) The biology of blue-green algae. Blackwell, Oxford, pp 487–500

    Google Scholar 

  • Castenholz RW (1968) The behavior of Oscillatoria terebriformis in hot springs. J Phycol 4:132–139

    Article  CAS  PubMed  Google Scholar 

  • Castielli O, De la Cerda B, Navarro JA, Hervas M, De la Rosa MA (2009) Proteomic analyses of the response of cyanobacteria to different stress conditions. FEBS Lett 583:1753–1758

    Article  CAS  PubMed  Google Scholar 

  • ÄŒervený J, Sinetova MA, ZavÅ™el T, Los DA (2015) Mechanisms of high temperature resistance of Synechocystis sp. PCC 6803: an impact of histidine kinase 34. Life (Basel) 5:676–699

    Google Scholar 

  • Chaurasia AK, Apte SK (2009) Overexpression of the groESL operon enhances the heat and salinity stress tolerance of the nitrogen-fixing cyanobacterium Anabaena sp. strain PCC 7120. Appl Environ Microbiol 75:6008–6012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chitnis PR, Nelson N (1991) Molecular cloning of the genes encoding two chaperone proteins of the cyanobacterium Synechocystis sp. PCC 6803. J Biol Chem 266:58–65

    CAS  PubMed  Google Scholar 

  • Cookson MJ, Baird PN, Hall LM, Coates AR (1989) Identification of two unknown reading frames in Synechococcus 6301 as homologues of the 10k and 65k antigen genes of Mycobacterium tuberculosis and related heat shock genes in E. coli and Coxiella burnetii. Nucleic Acids Res 17:6392

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cozens AL, Walker JE (1987) The organization and sequence of the genes for ATP synthase subunits in the cyanobacterium Synechococcus 6301. Support for an endosymbiotic origin of chloroplasts. J Mol Biol 194:359–383

    Article  CAS  PubMed  Google Scholar 

  • Eriksson MJ, Clark AK (1996) The heat shock protein ClpB mediates the development of thermotolerance in the cyanobacterium Synechococcus sp. strain PCC 7942. J Bacteriol 178:4839–4846

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Furuki M, Tanaka N, Hiyama T, Nakamoto H (1996) Cloning, characterization and functional analysis of groEL-like gene from thermophilic cyanobacterium Synechococcus vulcanus, which does not form an operon with groES. Biochim Biophys Acta 1294:106–110

    Article  PubMed  Google Scholar 

  • Glatz A, Horváth I, Varvasovszki V, Kovács E, Török Z, Vigh L (1997) Chaperonin genes of the Synechocystis PCC 6803 are differentially regulated under light-dark transition during heat stress. Biochem Biophys Res Commun 239:291–297

    Article  CAS  PubMed  Google Scholar 

  • Haselkorn R (1978) Heterocysts. Annu Rev Plant Physiol 29:319–344

    Article  CAS  Google Scholar 

  • Hendrix RW (1979) Purification and properties of GroE, a host protein involved in bacteriophage assembly. J Mol Biol 129:375–392

    Article  CAS  PubMed  Google Scholar 

  • Horwich AL, Farr GW, Fenton WA (2006) GroEL-GroES-mediated protein folding. Chem Rev 106:1917–1930

    Article  CAS  PubMed  Google Scholar 

  • Huq S, Sueoka K, Narumi S, Arisaka F, Nakamoto H (2010) Comparative biochemical characterization of two GroEL homologs from the cyanobacterium Synechococcus elongatus PCC 7942. Biosci Biotechnol Biochem 74:2273–2280

    Article  CAS  PubMed  Google Scholar 

  • Kanemori M, Mori H, Yura T (1994) Induction of heat shock proteins by abnormal proteins results from stabilization and not increased synthesis of sigma-32 in Escherichia coli. J Bacteriol 176:5648–5653

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kojima K, Nakamoto H (2007) A novel light- and heat-responsive regulation of the groE transcription in the absence of HrcA or CIRCE in cyanobacteria. FEBS Lett 581:1871–1880

    Article  CAS  PubMed  Google Scholar 

  • Kovács E, van der Vies SM, Glatz A, Török Z, Varvasovszki V, Horváth I, Vígh L (2001) The chaperonins of Synechocystis PCC 6803 differ in heat inducibility and chaperone activity. Biochem Biophys Res Commun 289:908–915

    Article  PubMed  Google Scholar 

  • Lehel C, Gombos Z, Torok Z, Vigh L (1993a) Growth temperature modulates thermotolerance and heat shock response of cyanobacterium Synechocystis PCC 6803. Plant Physiol Biochem 31:81–88

    CAS  Google Scholar 

  • Lehel C, Los D, Wada H, Györgyei J, Horváth I, Kovács E, Murata N, Vigh L (1993b) A second groEL-like gene, organized in a groESL operon is present in the genome of Synechocystis sp. PCC 6803. J Biol Chem 268:1799–1804

    CAS  PubMed  Google Scholar 

  • Lehel C, Wada H, Kovács E, Török Z, Gombos Z, Horváth I, Murata N, Vigh L (1992) Heat shock protein synthesis of the cyanobacterium Synechocystis PCC 6803: purification of the GroEL-related chaperonin. Plant Mol Biol 18:327–336

    Article  CAS  PubMed  Google Scholar 

  • Ludwig M, Bryant DA (2012) Synechococcus sp. strain PCC 7002 transcriptome: acclimation to temperature, salinity, oxidative stress, and Mixotrophic growth conditions. Front Microbiol 3:354. doi:10.3389/fmicb.2012.00354

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lund PA (2009) Multiple chaperonins in bacteria-why so many? FEMS Microbiol Rev 33:785–800

    Article  CAS  PubMed  Google Scholar 

  • Mamedov MD, Hayashi H, Murata N (1993) Effects of glycinebetaine and unsaturation of membrane lipids on heat stability of photosynthetic electron transport and phosphorylation reactions in Synechocystis PCC 6803. Biochim Biophys Acta 1142:1–5

    Article  CAS  Google Scholar 

  • Mishra Y, Chaurasia N, Rai LC (2009) Heat pretreatment alleviates UV-B toxicity in the cyanobacterium Anabaena doliolum: a proteomic analysis of cross tolerance. Photochem Photobiol 85:824–833

    Article  CAS  PubMed  Google Scholar 

  • Mitsui A, Kumazawa S, Takahashi A, Ikemoto H, Cao S, Arai T (1986) Strategy by which nitrogen-fixing unicellular cyanobacteria grow photoautotrophically. Nature 323:720–722

    Article  CAS  Google Scholar 

  • Morimoto RI, Jurivich DA, Kroeger PE, Mathur SK, Murphy SP, Nakai A, Sarge K, Abravaya K, Sistonen LT (1994) Regulation of heat shock gene transcription by a family of heat shock factors. In: Morimoto RI, Tissiers A, Georgopoulos C (eds) The biology of heat shock proteins and molecular chaperone. Cold Spring Harbor Lab Press, New York, pp 417–455

    Google Scholar 

  • Nakamoto H, Suzuki M, Kojima K (2003) Targeted inactivation of the hrcA repressor gene in cyanobacteria. FEBS Lett 549:57–62

    Article  CAS  PubMed  Google Scholar 

  • Nikkinen HL, Hakkila K, Gunnelius L, Huokko T, Pollari M, Tyystjarvi T (2012) The SigB σ factor regulates multiple salt acclimation responses of the cyanobacterium Synechocystis sp. PCC 6803. Plant Physiol 158:514–523

    Article  CAS  PubMed  Google Scholar 

  • Panda B, Basu B, Rajaram H, Apte SK (2014) Methyl viologen responsive proteome dynamics of Anabaena sp. strain PCC 7120. Proteomics 14:1895–1904

    Article  CAS  PubMed  Google Scholar 

  • Panda B, Basu B, Rajaram H, Apte SK (2015) Comparative proteomics of oxidative stress response in three cyanobacterial strains native to Indian paddy fields. J Proteome 127:152–160

    Article  CAS  Google Scholar 

  • Pederson DM, Daday A, Smith GD (1986) The use of nickel to probe the role of hydrogen metabolism in cyanobacterial nitrogen fixation. Biochimie 68:113–120

    Article  CAS  PubMed  Google Scholar 

  • Potnis AA, Rajaram H, Apte SK (2016) GroEL of the nitrogen-fixing cyanobacterium Anabaena sp. strain L-31 exhibits GroES and ATP-independent refolding activity. J Biochem 159:295–304

    CAS  PubMed  Google Scholar 

  • Rai S, Agrawal C, Shrivastava AK, Singh PK, Rai LC (2014) Comparative proteomics unveils cross species variations in Anabaena under salt stress. J Proteome 98:254–270

    Article  CAS  Google Scholar 

  • Rajaram H, Apte SK (2003) Heat-shock response and its contribution to thermotolerance of the nitrogen-fixing cyanobacterium Anabaena sp. strain L-31. Arch Microbiol 179:423–429

    Article  CAS  PubMed  Google Scholar 

  • Rajaram H, Apte SK (2008) Nitrogen status and heat-stress-dependent differential expression of the cpn60 chaperonin gene influences thermotolerance in the cyanobacterium Anabaena. Microbiology 154:317–325

    Article  CAS  PubMed  Google Scholar 

  • Rajaram H, Apte SK (2010) Differential regulation of groESL operon expression in response to heat and light in Anabaena. Arch Microbiol 192:729–738

    Article  CAS  PubMed  Google Scholar 

  • Rajaram H, Ballal AD, Apte SK, Wiegert T, Schumann W (2001) Cloning and characterization of the major groESL operon from a nitrogen-fixing cyanobacterium Anabaena sp. strain L-31. Biochim Biophys Acta 1519:143–146

    Article  CAS  PubMed  Google Scholar 

  • Rajaram H, Chaurasia AK, Apte SK (2014) Cyanobacterial heat-shock response: role and regulation of molecular chaperones. Microbiology 160:647–658

    Article  CAS  PubMed  Google Scholar 

  • Robson RL, Postgate JR (1980) Oxygen and hydrogen in biological nitrogen fixation. Annu Rev Microbiol 34:183–207

    Article  CAS  PubMed  Google Scholar 

  • Sato S, Ikeuchi M, Nakamoto H (2008) Expression and function of a groEL paralog in the thermophilic cyanobacterium Thermosynechococcus elongatus under heat and cold stress. FEBS Lett 582:3389–3395

    Article  CAS  PubMed  Google Scholar 

  • Sato M, Nimura-Matsune K, Watanabe S, Chibazakura T, Yoshikawa H (2007) Expression analysis of multiple dnaK genes in the cyanobacterium Synechococcus elongatus PCC 7942. J Bacteriol 189:3751–3758

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schopf JW (1975) Precambrian paleobiology: problems and perspectives. Annu Rev Earth Planet Sci 3:213–249

    Article  Google Scholar 

  • Schulz A, Schumann W (1996) hrcA, the first gene of the Bacillus subtilis dnaK operon encodes a negative regulator of class I heat shock genes. J Bacteriol 178:1088–1093

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shrivastava AK, Chatterjee A, Yadav S, Singh PK, Singh S, Rai LC (2015) UV-B stress induced metabolic rearrangements explored with comparative proteomics in three Anabaena species. J Proteome 127:122–133

    Article  CAS  Google Scholar 

  • Singh PK, Shrivastava AK, Chatterjee A, Pandey S, Rai S, Singh S, Rai LC (2015) Cadmium toxicity in diazotrophic Anabaena spp. adjudged by hasty up-accumulation of transporter and signaling and severe down-accumulation of nitrogen metabolism proteins. J Proteome 127:134–146

    Article  CAS  Google Scholar 

  • Slabas AR, Suzuki I, Murata N, Simon WJ, Hall JJ (2006) Proteomic analysis of the heat shock response in Synechocystis PCC 6803 and a thermally tolerant knockout strain lacking the histidine kinase 34 gene. Proteomics 6:845–864

    Article  CAS  PubMed  Google Scholar 

  • Stewart WDP (1980) Some aspects of structure and function in N2-fixing cyanobacteria. Annu Rev Microbiol 34:497–536

    Article  CAS  PubMed  Google Scholar 

  • Suzuki I, Simon WJ, Slabas AR (2006) The heat shock response of Synechocystis sp. PCC 6803 analysed by transcriptomics and proteomics. J Exp Bot 57:1573–1578

    Article  CAS  PubMed  Google Scholar 

  • Tanaka N, Hiyama T, Nakamoto H (1997) Cloning, characterization and functional analysis of groESL operon from thermophilic cyanobacterium Synechococcus vulcanus. Biochim Biophys Acta 1343:335–348

    Article  CAS  PubMed  Google Scholar 

  • Tang YC, Chang HC, Chakraborty K, Hartl UF, Hayer-Hartl M (2008) Essential role of the chaperonin folding compartment in vivo. EMBO J 27:1458–1468

    CAS  PubMed  PubMed Central  Google Scholar 

  • Webb R, Reddy KJ, Sherman LA (1990) Regulation and sequence of the Synechococcus sp. strain PCC 7942 groESL operon, encoding a cyanobacterial chaperonin. J Bacteriol 172:5079–5088

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wynn-Williams DD (1990) Ecological aspects of Antarctic microbiology. Adv Microbiol Ecol 11:71–146

    Article  Google Scholar 

  • Yamazawa A, Takeyama H, Takeda D, Matsunaga T (1999) UV-A-induced expression of GroEL in the UV-A-resistant marine cyanobacterium Oscillatoria sp. NKBG 091600. Microbiology 145:949–954

    Article  CAS  PubMed  Google Scholar 

  • Yura T, Nakahigashi K (1999) Regulation of the heat-shock response. Curr Opin Microbiol 2:153–158

    Article  CAS  PubMed  Google Scholar 

  • Zuber U, Schumann W (1994) CIRCE, a novel heat shock element involved in regulation of heat shock operon dnaK of Bacillus subtilis. J Bacteriol 176:1359–1363

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hema Rajaram .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd.

About this chapter

Cite this chapter

Rajaram, H., Chaurasia, A.K., Potnis, A.A. (2017). Multiple Chaperonins in Cyanobacteria: Why One Is Not Enough!. In: Kumar, C., Mande, S. (eds) Prokaryotic Chaperonins. Heat Shock Proteins, vol 11. Springer, Singapore. https://doi.org/10.1007/978-981-10-4651-3_7

Download citation

Publish with us

Policies and ethics