Multiple Chaperonins and Their Potential Roles in Rhizobia

  • Peter A. LundEmail author
Part of the Heat Shock Proteins book series (HESP, volume 11)


The Rhizobia are a paraphyletic group of gram-negative bacteria which are of enormous importance to agriculture, due to their ability to form nitrogen-fixing nodules on the roots of legumes. These organisms have a remarkable tendency to possess multiple copies of chaperonin genes, with up to seven copies being recorded—a record as far as bacterial genomes are concerned. The regulation of these multiple chaperonin genes is complex, suggesting that they may have roles in addition to protection from stresses that induce protein unfolding, and the proteins that they encode show little tendency to form mixed oligomers, again suggesting at least some specificity of function. Closely related bacteria that lack the ability to fix nitrogen often do not show this high chaperonin gene number. The conclusion is that the presence of the multiple chaperonins is likely to be related at least in part to the complex processes of nodule formation and nitrogen fixation, and some evidence exists to support this hypothesis.


  1. Babst M, Hennecke H, Fischer HM (1996) Two different mechanisms are involved in the heat-shock regulation of chaperonin gene expression in Bradyrhizobium japonicum. Mol Microbiol 19:827–839CrossRefPubMedGoogle Scholar
  2. Barnett MJ, Bittner AN, Toman CJ, Oke V, Long SR (2012) Dual RpoH sigma factors and transcriptional plasticity in a symbiotic bacterium. J Bacteriol 194:4983–4994CrossRefPubMedPubMedCentralGoogle Scholar
  3. Bittner AN, Oke V (2006) Multiple groESL operons are not key targets of RpoH1 and RpoH2 in Sinorhizobium meliloti. J Bacteriol 188:3507–3515CrossRefPubMedPubMedCentralGoogle Scholar
  4. Bittner AN, Foltz A, Oke V (2007) Only one of five groEL genes is required for viability and successful symbiosis in Sinorhizobium meliloti. J Bacteriol 189:1884–1889CrossRefPubMedGoogle Scholar
  5. Brady NC, Weil RR (2007) The nature and properties of soils, 14th edn. Prentice HallGoogle Scholar
  6. Dos Santos PC, Fang Z, Mason SW, Setubal JC, Dixon R (2012) Distribution of nitrogen fixation and nitrogenase-like sequences amongst microbial genomes. BMC Genomics 13:162CrossRefPubMedPubMedCentralGoogle Scholar
  7. Falkowski PG (1997) Evolution of the nitrogen cycle and its influence on the biological sequestration of CO2 in the ocean. Nature 387:272–275CrossRefGoogle Scholar
  8. Fischer HM (1994) Genetic regulation of nitrogen fixation in rhizobia. Microbiol Rev 58:352–386PubMedPubMedCentralGoogle Scholar
  9. Fischer HM, Babst M, Kaspar T, Acuña G, Arigoni F, Hennecke H (1993) One member of a gro-ESL-like chaperonin multigene family in Bradyrhizobium japonicum is co-regulated with symbiotic nitrogen fixation genes. EMBO J 12:2901–2912PubMedPubMedCentralGoogle Scholar
  10. Fischer HM, Schneider K, Babst M, Hennecke H (1999) GroEL chaperonins are required for the formation of a functional nitrogenase in Bradyrhizobium japonicum. Arch Microbiol 171:279–289CrossRefGoogle Scholar
  11. Gage DJ (2004) Infection and invasion of roots by symbiotic, nitrogen-fixing rhizobia during nodulation of temperate legumes. Microbiol Mol Biol Rev 68:280–300CrossRefPubMedPubMedCentralGoogle Scholar
  12. Galibert F, Finan TM, Long SR, Puhler A, Abola P, Ampe F, Barloy-Hubler F, Barnett MJ, Becker A, Boistard P, Bothe G, Boutry M, Bowser L, Buhrmester J, Cadieu E, Capela D, Chain P, Cowie A, Davis RW, Dreano S, Federspiel NA, Fisher RF, Gloux S, Godrie T, Goffeau A, Golding B, Gouzy J, Gurjal M, Hernandez-Lucas I, Hong A, Huizar L, Hyman RW, Jones T, Kahn D, Kahn ML, Kalman S, Keating DH, Kiss E, Komp C, Lelaure V, Masuy D, Palm C, Peck MC, Pohl TM, Portetelle D, Purnelle B, Ramsperger U, Surzycki R, Thebault P, Vandenbol M, Vorholter FJ, Weidner S, Wells DH, Wong K, Yeh KC, Batut J (2001) The composite genome of the legume symbiont Sinorhizobium meliloti. Science 293:668–672CrossRefPubMedGoogle Scholar
  13. George R, Kelly SM, Price NC, Erbse A, Fisher M, Lund PA (2004) Three GroEL homologues from Rhizobium leguminosarum have distinct in vitro properties. Biochem Biophys Res Commun 324:822–828CrossRefPubMedGoogle Scholar
  14. González V, Santamaría RI, Bustos P, Hernández-González I, Medrano-Soto A, Moreno-Hagelsieb G, Janga SC, Ramírez MA, Jiménez-Jacinto V, Collado-Vides J, Dávila G (2006) The partitioned Rhizobium etli genome: genetic and metabolic redundancy in seven interacting replicons. Proc Natl Acad Sci U S A 103:3834–3839CrossRefPubMedPubMedCentralGoogle Scholar
  15. Gould PS, Burgar HR, Lund PA (2007a) Homologous cpn60 genes in Rhizobium leguminosarum are not functionally equivalent. Cell Stress Chaperones 12:123–131CrossRefPubMedPubMedCentralGoogle Scholar
  16. Gould P, Maguire M, Lund PA (2007b) Distinct mechanisms regulate expression of the two major groEL homologues in Rhizobium leguminosarum. Arch Microbiol 187:41640Google Scholar
  17. Goyal K, Qamra R, Mande SC (2006) Multiple gene duplication and rapid evolution in the groEL gene: functional implications. J Mol Evol 63:781–787CrossRefPubMedGoogle Scholar
  18. Kaneko T, Nakamura Y, Sato S, Asamizu E, Kato T, Sasamoto S, Watanabe A, Idesawa K, Ishikawa A, Kawashima K, Kimura T, Kishida Y, Kiyokawa C, Kohara M, Matsumoto M, Matsuno A, Mochizuki Y, Nakayama S, Nakazaki N, Shimpo S, Sugimoto M, Takeuchi C, Yamada M, Tabata S (2000) Complete genome structure of the nitrogen-fixing symbiotic bacterium Mesorhizobium loti. DNA Res 7:331–338CrossRefPubMedGoogle Scholar
  19. Karunakaran R, Ramachandran VK, Seaman JC, East AK, Mouhsine B, Mauchline TH, Prell J, Skeffington A, Poole PS (2009) Transcriptomic analysis of Rhizobium leguminosarum biovar viciae in symbiosis with host plants Pisum sativum and Vicia cracca. J Bacteriol 191:4002–4014CrossRefPubMedPubMedCentralGoogle Scholar
  20. Lund PA (2009) Multiple chaperonins in bacteria—why so many? FEMS Microbiol Rev 33:785–800CrossRefPubMedGoogle Scholar
  21. Minder AC, Fischer HM, Hennecke H, Narberhaus F (2000) Role of HrcA and CIRCE in the heat shock regulatory network of Bradyrhizobium japonicum. J Bacteriol 182:14–22CrossRefPubMedPubMedCentralGoogle Scholar
  22. Mitsui H, Sato T, Sato Y, Ito N, Minamisawa K (2004) Sinorhizobium meliloti RpoH1 is required for effective nitrogen-fixing symbiosis with alfalfa. Mol Genet Genomics 271:416–425CrossRefPubMedGoogle Scholar
  23. Ogawa J, Long SR (1995) The Rhizobium meliloti groELc locus is required for regulation of early nod genes by the transcription activator NodD. Genes Dev 9:714–729CrossRefPubMedGoogle Scholar
  24. Oke V, Long SR (1999) Bacterial genes induced within the nodule during the Rhizobium–legume symbiosis. Mol Microbiol 32:837–849CrossRefPubMedGoogle Scholar
  25. Pessi G, Ahrens CH, Rehrauer H, Lindemann A, Hauser F, Fischer HM, Hennecke H (2007) Genome-wide transcript analysis of Bradyrhizobium japonicum bacteroids in soybean root nodules. Mol Plant Microbe Interact 20:1353–1363CrossRefPubMedGoogle Scholar
  26. Rodríguez-Quiñones F, Maguire M, Wallington EJ, Gould PS, Yerko V, Downie JA, Lund PA (2005) Two of the three groEL homologues in Rhizobium leguminosarum are dispensable for normal growth. Arch Microbiol 184:253–265CrossRefGoogle Scholar
  27. Rusanganwa E, Gupta RS (1993) Cloning and characterization of multiple groEL chaperonin-encoding genes in Rhizobium meliloti. Gene 126:67–75CrossRefPubMedGoogle Scholar
  28. Stüeken EE, Buick R, Guy BM, Koehler MC (2015) Isotopic evidence for biological nitrogen fixation by molybdenum-nitrogenase from 3.2 Gyr. Nature 520:666–669CrossRefPubMedGoogle Scholar
  29. Wallington EJ, Lund PA (1994) Rhizobium leguminosarum contains multiple chaperonin (cpn60) genes. Microbiology 140:113–122CrossRefPubMedGoogle Scholar
  30. Young JPY, Haukka KE (1996) Diversity and properties of rhizobia. New Phytol 133:87–94CrossRefGoogle Scholar
  31. Young JP, Crossman LC, Johnston AW, Thomson NR, Ghazoui ZF, Hull KH, Wexler M, Curson AR, Todd JD, Poole PS, Mauchline TH, East AK, Quail MA, Churcher C, Arrowsmith C, Cherevach I, Chillingworth T, Clarke K, Cronin A, Davis P, Fraser A, Hance Z, Hauser H, Jagels K, Moule S, Mungall K, Norbertczak H, Rabbinowitsch E, Sanders M, Simmonds M, Whitehead S, Parkhill J (2006) The genome of Rhizobium leguminosarum has recognizable core and accessory components. Genome Biol 7:R34CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2017

Authors and Affiliations

  1. 1.School of Biosciences & Institute of Microbiology and Infection, College of Life and Environmental Sciences, University of BirminghamBirminghamUK

Personalised recommendations