Skip to main content

Dynamic Interplay of the Myxobacterial Chaperonins

  • Chapter
  • First Online:
Book cover Prokaryotic Chaperonins

Part of the book series: Heat Shock Proteins ((HESP,volume 11))

  • 515 Accesses

Abstract

Most of the sequenced myxobacterial genomes possess duplicated groEL genes: one is in a complete bicistronic groESL operon, while the other(s) are in a groESL operon or stand alone. The two groEL genes are subneofunctionalized in Myxococcus xanthus DK1622, the model strain of myxobacteria. Although alternatively essential for cell survival, groEL1 is required for the developmental process, while groEL2 participates in the predation process and the biosynthesis of secondary metabolite myxovirescin. The divergent functions of GroEL1 and GroEL2 are majorly resulted from the differences of the apical and C-terminal equatorial regions of the two paralogous chaperonins. The stand-alone groEL2 gene still requires groES for functions, and the expression levels of groELs and groES genes could be synergic and self-regulated. There is a complicated dynamic interplay between duplicated GroEL proteins and the single cofactor GroES in M. xanthus.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Bittner AN, Foltz A, Oke V (2007) Only one of five groEL genes is required for viability and successful symbiosis in Sinorhizobium meliloti. J Bacteriol 189:1884–1889

    Article  CAS  PubMed  Google Scholar 

  • Brocchieri L, Karlin S (2000) Conservation among HSP60 sequences in relation to structure, function, and evolution. Protein Sci 9:476–486

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Craig EA, Gambill BD, Nelson RJ (1993) Heat shock proteins: molecular chaperones of protein biogenesis. Microbiol Rev 57:402–414

    CAS  PubMed  PubMed Central  Google Scholar 

  • Dworkin M, Kaiser D (1993) Myxobacteria II. American Society for Microbiology, Washington

    Google Scholar 

  • Fayet O, Ziegelhoffer T, Georgopoulos C (1989) The groES and groEL heat shock gene products of Escherichia coli are essential for bacterial growth at all temperatures. J Bacteriol 171:1379–1385

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fenton WA, Kashi Y, Furtak K, Horwich AL (1994) Residues in chaperonin GroEL required for polypeptide binding and release. Nature 371:614–619

    Article  CAS  PubMed  Google Scholar 

  • George R, Kelly SM, Price NC, Erbse A, Fisher M et al (2004) Three GroEL homologues from Rhizobium leguminosarum have distinct in vitro properties. Biochem Biophys Res Commun 324:822–828

    Article  CAS  PubMed  Google Scholar 

  • Goldman BS, Nierman WC, Kaiser D, Slater SC, Durkin AS et al (2006) Evolution of sensory complexity recorded in a myxobacterial genome. Proc Natl Acad Sci U S A 103:15200–15205

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gould PS, Burgar HR, Lund PA (2007) Homologous cpn60 genes in Rhizobium leguminosarum are not functionally equivalent. Cell Stress Chaperones 12:123–131

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Han K, Li ZF, Peng R, Zhu LP, Zhou T, Wang LG et al (2013) Extraordinary expansion of a Sorangium cellulosum genome from an alkaline milieu. Sci Rep 3:2101

    Article  PubMed  PubMed Central  Google Scholar 

  • Horwich AL, Farr GW, Fenton WA (2006) GroEL-GroES-mediated protein folding. Chem Rev 106:1917–1930

    Article  CAS  PubMed  Google Scholar 

  • Houry WA, Frishman D, Eckerskorn C, Lottspeich F, Hartl FU (1999) Identification of in vivo substrates of the chaperonin GroEL. Nature 402:147–154

    Article  CAS  PubMed  Google Scholar 

  • Jiang DM, Zhao L, Zhang CY, Li J, Xia ZJ, Wang J, Wu ZH, Li YZ (2008) Taxonomic analysis of Sorangium strains based on HSP60 and 16S rRNA gene sequences and morphology. Int J Syst Evol Microbiol 58:2654–2659

    Article  CAS  PubMed  Google Scholar 

  • Karlin S, Brocchieri L (2000) Heat shock protein 60 sequence comparisons: duplications, lateral transfer, and mitochondrial evolution. Proc Natl Acad Sci U S A. 97:11348–11353

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kerner MJ, Naylor DJ, Ishihama Y, Maier T, Chang HC et al (2005) Proteome-wide analysis of chaperonin-dependent protein folding in Escherichia coli. Cell 122:209–220

    Article  CAS  PubMed  Google Scholar 

  • Kumar CMS, Mande SC, Mahajan G (2015) Multiple chaperonins in bacteria—novel functions and non-canonical behaviors. Cell Stress Chaperones 20:555–574

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li J, Wang Y, Zhang CY, Zhang WY, Jiang DM et al (2010) Myxococcus xanthus viability depends on groEL supplied by either of two genes, but the paralogs have different functions during heat shock, predation, and development. J Bacteriol 192:1875–1881

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu H, Kovacs E, Lund PA (2009) Characterisation of mutations in GroES that allow GroEL to function as a single ring. FEBS Lett 583:2365–2371

    Article  CAS  PubMed  Google Scholar 

  • Lund PA (2001) Microbial molecular chaperones. Adv Microb Physiol 44:93–140

    Article  CAS  PubMed  Google Scholar 

  • Martin J, Langer T, Boteva R, Schramel A, Horwich AL, Hartl FU (1991) Chaperonin-mediated protein folding at the surface of groEL through a ‘molten globule’-like intermediate. Nature 352:36–42

    Article  CAS  PubMed  Google Scholar 

  • Ojha A, Anand M, Bhatt A, Kremer L, Jacobs WR Jr et al (2005) GroEL1: a dedicated chaperone involved in mycolic acid biosynthesis during biofilm formation in mycobacteria. Cell 123:861–873

    Article  CAS  PubMed  Google Scholar 

  • Ranson NA, White HE, Saibil HR (1998) Chaperonins. Biochem J 333(Pt 2):233–242

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Reichenbach H (2004) The myxococcales. In: Garrity GM (ed) Bergey’s manual of systematic bacteriology. Springer-Verlag, New York, pp 1059–1143

    Google Scholar 

  • Saibil HR, Ranson NA (2002) The chaperonin folding machine. Trends Biochem Sci 27:627–632

    Article  CAS  PubMed  Google Scholar 

  • Shimkets LJ (1990) Social and developmental biology of the myxobacteria. Microbiol Rev 54:473–501

    CAS  PubMed  PubMed Central  Google Scholar 

  • Shimkets L, Dworkin M, Reichenbach H (2006) The myxobacteria. In: Dworkin M, Falkow S, Rosenberg E, Schleifer K-H, Stackebrandt E (eds) The prokaryotes, vol 7, 3rd edn. Springer, Heidelberg, pp 31–115

    Chapter  Google Scholar 

  • VanBogelen RA, Acton MA, Neidhardt FC (1987) Induction of the heat shock regulon does not produce thermotolerance in Escherichia coli. Genes Dev 1:525–531

    Article  CAS  PubMed  Google Scholar 

  • Viitanen PV, Donaldson GK, Lorimer GH, Lubben TH, Gatenby AA (1991) Complex interactions between the chaperonin 60 molecular chaperone and dihydrofolate reductase. Biochemistry 30:9716–9723

    Article  CAS  PubMed  Google Scholar 

  • Wang Y, Zhang WY, Zhang Z, Li J, Li ZF, Tan ZG, Zhang TT, Wu ZH, Liu H, Li YZ (2013) Mechanisms involved in the functional divergence of duplicated GroEL chaperonins in Myxococcus xanthus DK1622. PLoS Genet 9:e1003306

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang Y, Li X, Zhang W, Zhou X, Li YZ (2014) The groEL2 gene, but not groEL1, is required for biosynthesis of the secondary metabolite myxovirescin in Myxococcus xanthus DK1622. Microbiology 160:488–495

    Article  CAS  PubMed  Google Scholar 

  • Zhuo L, Wang Y, Zhang Z, Li J, Zhang XH, Li YZ (2017) Myxococcus xanthus DK1622 coordinates expressions of the duplicate groEL and single groES genes for synergistic functions of GroELs and GroES. Front Microbiol 8:733

    Google Scholar 

  • Weimer RM, Creighton C, Stassinopoulos A, Youderian P, Hartzell PL (1998) A chaperone in the HSP70 family controls production of extracellular fibrils in Myxococcus xanthus. J Bacteriol 180:5357–5368

    CAS  PubMed  PubMed Central  Google Scholar 

  • Weissman JS, Hohl CM, Kovalenko O, Kashi Y, Chen S, Braig K, Saibil HR, Fenton WA, Horwich AL (1995) Mechanism of GroEL action: productive release of polypeptide from a sequestered position under GroES. Cell 83:577–587

    Article  CAS  PubMed  Google Scholar 

  • Wilson AC, Wu CC, Yates JR 3rd, Tan M (2005) Chlamydial GroEL autoregulates its own expression through direct interactions with the HrcA repressor protein. J Bacteriol 187:7535–7542

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang Z, Geng Y, Shi W (1998) A DnaK homolog in Myxococcus xanthus is involved in social motility and fruiting body formation. J Bacteriol 180:218–224

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yue-zhong Li .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd.

About this chapter

Cite this chapter

Zhuo, L., Wang, Y., Zhang, Z., Li, Yz. (2017). Dynamic Interplay of the Myxobacterial Chaperonins. In: Kumar, C., Mande, S. (eds) Prokaryotic Chaperonins. Heat Shock Proteins, vol 11. Springer, Singapore. https://doi.org/10.1007/978-981-10-4651-3_4

Download citation

Publish with us

Policies and ethics