Prokaryotic Multiple Chaperonins: The Mediators of Functional and Evolutionary Diversity

  • C. M. Santosh Kumar
Part of the Heat Shock Proteins book series (HESP, volume 11)


Chaperonins are a class of molecular chaperones that form large multimeric assemblies for encapsulation of substrate proteins. Surprisingly, 30% of newly sequenced bacterial genomes encode multiple copies of the chaperonins. The distribution of these multiple copies appears to follow a phylum-specific pattern. Functional and structural studies on several of these chaperonins have delineated how these extra chaperonins evolved functional diversity and contributed towards the biological adaptation of the hosting organisms. Since several of these bacteria are either pathogenic or economically important, and the chaperonins regulate the pathogenic processes in these organisms, it is important to understand their biology. This chapter is aimed to act as a primer for the subsequent chapters that describe different examples of multiple chaperonins and the plethora of their functional diversity.



Santosh is Newton International Fellow at the University of Birmingham, UK, sponsored by The Royal Society, The British Academy and the Academy of Medical Sciences, UK. Further, we wish to acknowledge the support of Department of Biotechnology, India.


  1. Barreiro C, Gonzalez-Lavado E, Brand S, Tauch A, Martin JF (2005) Heat shock proteome analysis of wild-type Corynebacterium glutamicum ATCC 13032 and a spontaneous mutant lacking GroEL1, a dispensable chaperone. J Bacteriol 187(3):884–889CrossRefPubMedPubMedCentralGoogle Scholar
  2. Basu D, Khare G, Singh S, Tyagi A, Khosla S, Mande SC (2009) A novel nucleoid-associated protein of Mycobacterium tuberculosis is a sequence homolog of GroEL. Nucleic Acids Res 37(15):4944–4954CrossRefPubMedPubMedCentralGoogle Scholar
  3. Coates AR, Shinnick TM, Ellis RJ (1993) Chaperonin nomenclature. Mol Microbiol 8(4):787CrossRefPubMedGoogle Scholar
  4. de Leon P, Marco S, Isiegas C, Marina A, Carrascosa JL, Mellado RP (1997) Streptomyces lividans groES, groEL1 and groEL2 genes. Microbiology 143(Pt 11):3563–3571CrossRefPubMedGoogle Scholar
  5. Duchene AM, Thompson CJ, Mazodier P (1994) Transcriptional analysis of groEL genes in Streptomyces coelicolor A3(2). Mol Gen Genet 245(1):61–68CrossRefPubMedGoogle Scholar
  6. Ferat JL, Michel F (1993) Group II self-splicing introns in bacteria. Nature 364(6435):358–361CrossRefPubMedGoogle Scholar
  7. Ferreyra RG, Soncini FC, Viale AM (1993) Cloning, characterization, and functional expression in Escherichia coli of chaperonin (groESL) genes from the phototrophic sulfur bacterium Chromatium vinosum. J Bacteriol 175(5):1514–1523CrossRefPubMedPubMedCentralGoogle Scholar
  8. Fischer HM, Babst M, Kaspar T, Acuna G, Arigoni F, Hennecke H (1993) One member of a gro-ESL-like chaperonin multigene family in Bradyrhizobium japonicum is co-regulated with symbiotic nitrogen fixation genes. EMBO J 12(7):2901–2912PubMedPubMedCentralGoogle Scholar
  9. Furuki M, Tanaka N, Hiyama T, Nakamoto H (1996) Cloning, characterization and functional analysis of groEL-like gene from thermophilic cyanobacterium Synechococcus vulcanus, which does not form an operon with groES. Biochim Biophys Acta 1294(2):106–110CrossRefPubMedGoogle Scholar
  10. George R, Kelly SM, Price NC, Erbse A, Fisher M, Lund PA (2004) Three GroEL homologues from Rhizobium leguminosarum have distinct in vitro properties. Biochem Biophys Res Commun 324(2):822–828CrossRefPubMedGoogle Scholar
  11. Georgopoulos CP, Hendrix RW, Casjens SR, Kaiser AD (1973) Host participation in bacteriophage lambda head assembly. J Mol Biol 76(1):45–60CrossRefPubMedGoogle Scholar
  12. Gerard HC, Whittum-Hudson JA, Schumacher HR, Hudson AP (2004) Differential expression of three chlamydia trachomatis hsp60-encoding genes in active vs. persistent infections. Microb Pathog 36(1):35–39CrossRefPubMedGoogle Scholar
  13. Gould P, Maguire M, Lund PA (2007) Distinct mechanisms regulate expression of the two major groEL homologues in Rhizobium leguminosarum. Arch Microbiol 187(1):1–14CrossRefPubMedGoogle Scholar
  14. Goyal K, Qamra R, Mande SC (2006) Multiple gene duplication and rapid evolution in the groEL gene: functional implications. J Mol Evol 63(6):781–787CrossRefPubMedGoogle Scholar
  15. Grandvalet C, Rapoport G, Mazodier P (1998) hrcA, encoding the repressor of the groEL genes in Streptomyces albus G, is associated with a second dnaJ gene. J Bacteriol 180(19):5129–5134PubMedPubMedCentralGoogle Scholar
  16. Hausner G, Hafez M, Edgell DR (2014) Bacterial group I introns: mobile RNA catalysts. Mob DNA 5(1):8CrossRefPubMedPubMedCentralGoogle Scholar
  17. Hemmingsen SM, Woolford C, van der Vies SM, Tilly K, Dennis DT, Georgopoulos CP, Hendrix RW, Ellis RJ (1988) Homologous plant and bacterial proteins chaperone oligomeric protein assembly. Nature 333(6171):330–334CrossRefPubMedGoogle Scholar
  18. Hughes AL (1993) Contrasting evolutionary rates in the duplicate chaperonin genes of Mycobacterium tuberculosis and M. leprae. Mol Biol Evol 10(6):1343–1359PubMedGoogle Scholar
  19. Karunakaran KP, Noguchi Y, Read TD, Cherkasov A, Kwee J, Shen C, Nelson CC, Brunham RC (2003) Molecular analysis of the multiple GroEL proteins of Chlamydiae. J Bacteriol 185(6):1958–1966CrossRefPubMedPubMedCentralGoogle Scholar
  20. Kojima K, Nakamoto H (2007) A novel light- and heat-responsive regulation of the groE transcription in the absence of HrcA or CIRCE in cyanobacteria. FEBS Lett 581(9):1871–1880CrossRefPubMedGoogle Scholar
  21. Kol A, Bourcier T, Lichtman AH, Libby P (1999) Chlamydial and human heat shock protein 60s activate human vascular endothelium, smooth muscle cells, and macrophages. J Clin Invest 103(4):571–577CrossRefPubMedPubMedCentralGoogle Scholar
  22. Kondrashov FA, Kondrashov AS (2006) Role of selection in fixation of gene duplications. J Theor Biol 239(2):141–151CrossRefPubMedGoogle Scholar
  23. Kong TH, Coates AR, Butcher PD, Hickman CJ, Shinnick TM (1993) Mycobacterium tuberculosis expresses two chaperonin-60 homologs. Proc Natl Acad Sci USA 90(7):2608–2612CrossRefPubMedPubMedCentralGoogle Scholar
  24. Kovacs E, Lehel C, Mustardy L, Gombos Z, Torok Z, Horvath I, Vigh L (1992) Heat-stress induces association of the GroEL-analog chaperonin with thylakoid membranes in cyanobacterium, Synechocystis PCC-6803. Kluwer Academic, Dordrecht, p 214Google Scholar
  25. Kumar CM, Mande SC (2011) Protein chaperones and non-protein substrates: on substrate promiscuity of GroEL. Curr Sci 100(11):1646–1653Google Scholar
  26. Kumar P, Kumar D, Parikh A, Rananaware D, Gupta M, Singh Y, Nandicoori VK (2009) The Mycobacterium tuberculosis protein kinase K modulates activation of transcription from the promoter of mycobacterial monooxygenase operon through phosphorylation of the transcriptional regulator VirS. J Biol Chem 284(17):11090–11099CrossRefPubMedPubMedCentralGoogle Scholar
  27. Kumar CM, Mande SC, Mahajan G (2015) Multiple chaperonins in bacteria—novel functions and non-canonical behaviors. Cell Stress Chaperones 20(4):555–574CrossRefPubMedPubMedCentralGoogle Scholar
  28. Lehel C, Los D, Wada H, Györgyei J, Horváth I, Kovács E, Murata N, Vigh L (1993) A second groEL-like gene, organized in a groESL operon is present in the genome of Synechocystis sp. PCC 6803. J Biol Chem 268(3):1799–1804PubMedGoogle Scholar
  29. Lund PA (2009) Multiple chaperonins in bacteria—why so many? FEMS Microbiol Rev 33(4):785–800CrossRefPubMedGoogle Scholar
  30. Maiwald M, Lepp PW, Relman DA (2003) Analysis of conserved non-rRNA genes of Tropheryma whipplei. Syst Appl Microbiol 26(1):3–12CrossRefPubMedGoogle Scholar
  31. Mande SC, Kumar CM, Sharma A (2013) Evolution of bacterial chaperonin 60 paralogues and moonlighting activity. In: Henderson B (ed) Moonlighting cell stress proteins in microbial infections. Springer, Netherlands, pp 101–121CrossRefGoogle Scholar
  32. Martinez-Abarca F, Toro N (2000) Group II introns in the bacterial world. Mol Microbiol 38(5):917–926CrossRefPubMedGoogle Scholar
  33. Mazodier P, Guglielmi G, Davies J, Thompson CJ (1991) Characterization of the groEL-like genes in Streptomyces albus. J Bacteriol 173(22):7382–7386CrossRefPubMedPubMedCentralGoogle Scholar
  34. McNally D, Fares MA (2007) In silico identification of functional divergence between the multiple groEL gene paralogs in Chlamydiae. BMC Evol Biol 7:81CrossRefPubMedPubMedCentralGoogle Scholar
  35. Nakamura Y, Kaneko T, Hirosawa M, Miyajima N, Tabata S (1998) CyanoBase, a www database containing the complete nucleotide sequence of the genome of Synechocystis sp. strain PCC6803. Nucleic Acids Res 26(1):63–67CrossRefPubMedPubMedCentralGoogle Scholar
  36. Nishio K, Hirohashi T, Nakai M (1999) Chloroplast chaperonins: evidence for heterogeneous assembly of alpha and beta Cpn60 polypeptides into a chaperonin oligomer. Biochem Biophys Res Commun 266(2):584–587CrossRefPubMedGoogle Scholar
  37. Ogawa J, Long SR (1995) The Rhizobium meliloti groELc locus is required for regulation of early nod genes by the transcription activator NodD. Genes Dev 9(6):714–729CrossRefPubMedGoogle Scholar
  38. Ojha A, Anand M, Bhatt A, Kremer L, Jacobs WR Jr, Hatfull GF (2005) GroEL1: a dedicated chaperone involved in mycolic acid biosynthesis during biofilm formation in mycobacteria. Cell 123(5):861–873CrossRefPubMedGoogle Scholar
  39. Perez J, Castaneda-Garcia A, Jenke-Kodama H, Muller R, Munoz-Dorado J (2008) Eukaryotic-like protein kinases in the prokaryotes and the myxobacterial kinome. Proc Natl Acad Sci U S A 105(41):15950–15955CrossRefPubMedPubMedCentralGoogle Scholar
  40. Price CT, Al-Khodor S, Al-Quadan T, Abu Kwaik Y (2010) Indispensable role for the eukaryotic-like ankyrin domains of the ankyrin B effector of Legionella pneumophila within macrophages and amoebae. Infect Immun 78(5):2079–2088CrossRefPubMedPubMedCentralGoogle Scholar
  41. Rajaram H, Apte SK (2010) Differential regulation of groESL operon expression in response to heat and light in Anabaena. Arch Microbiol 192(9):729–738CrossRefPubMedGoogle Scholar
  42. Rinke de Wit TF, Bekelie S, Osland A, Miko TL, Hermans PW, van Soolingen D, Drijfhout JW, Schoningh R, Janson AA, Thole JE (1992) Mycobacteria contain two groEL genes: the second Mycobacterium leprae groEL gene is arranged in an operon with groES. Mol Microbiol 6(14):1995–2007CrossRefPubMedGoogle Scholar
  43. Sato S, Ikeuchi M, Nakamoto H (2008) Expression and function of a groEL paralog in the thermophilic cyanobacterium Thermosynechococcus elongatus under heat and cold stress. FEBS Lett 582(23–24):3389–3395CrossRefPubMedGoogle Scholar
  44. Smidt H, van Leest M, van der Oost J, de Vos WM (2000) Transcriptional regulation of the cpr gene cluster in ortho-chlorophenol-respiring Desulfitobacterium dehalogenans. J Bacteriol 182(20):5683–5691CrossRefPubMedPubMedCentralGoogle Scholar
  45. Tanaka N, Hiyama T, Nakamoto H (1997) Cloning, characterization and functional analysis of groESL operon from thermophilic cyanobacterium Synechococcus vulcanus. Biochim Biophys Acta 1343(2):335–348CrossRefPubMedGoogle Scholar
  46. Tang YC, Chang HC, Roeben A, Wischnewski D, Wischnewski N, Kerner MJ, Hartl FU, Hayer-Hartl M (2006) Structural features of the GroEL-GroES nano-cage required for rapid folding of encapsulated protein. Cell 125(5):903–914CrossRefPubMedGoogle Scholar
  47. Techtmann SM, Robb FT (2010) Archaeal-like chaperonins in bacteria. Proc Natl Acad Sci U S A 107(47):20269–20274CrossRefPubMedPubMedCentralGoogle Scholar
  48. Ventura M, Canchaya C, Zink R, Fitzgerald GF, van Sinderen D (2004) Characterization of the groEL and groES loci in bifidobacterium breve UCC 2003: genetic, transcriptional, and phylogenetic analyses. Appl Environ Microbiol 70(10):6197–6209CrossRefPubMedPubMedCentralGoogle Scholar
  49. Vitlin Gruber A, Nisemblat S, Azem A, Weiss C (2013) The complexity of chloroplast chaperonins. Trends Plant Sci 18(12):688–694CrossRefPubMedGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2017

Authors and Affiliations

  1. 1.School of Biosciences and Institute of Microbiology and InfectionUniversity of BirminghamBirminghamUK

Personalised recommendations