Advertisement

Regulation of the Heat Shock Response in Bacteria

Chapter
Part of the Heat Shock Proteins book series (HESP, volume 11)

Abstract

Bacteria sense temperature changes in many ways and have developed different strategies to respond to these changes. A sudden increase in temperature results in protein unfolding, and the level of unfolded proteins seems to be the primary signal that triggers the heat shock response. Four different systems have been described so far involved in temperature sensing: alternative sigma factors, transcriptional repressors, and RNA and DNA thermosensors. Furthermore, titration of molecular chaperones serves as mediators in some cases. All four mechanisms will be described in detail and illustrated by prominent examples.

References

  1. Alba BM, Zhong HJ, Pelayo JC, Gross CA (2001) degS (hhoB) is an essential Escherichia coli gene whose indispensable function is to provide σE activity. Mol Microbiol 40:1323–1333CrossRefPubMedGoogle Scholar
  2. Atlung T, Ingmer H (1997) H-NS: a modulator of environmentally regulated gene expression. Mol Microbiol 24:7–17CrossRefPubMedGoogle Scholar
  3. Balsiger S, Ragaz C, Baron C, Narberhaus F (2004) Replicon-specific regulation of small heat shock genes in Agrobacterium tumefaciens. J Bacteriol 186:6824–6829CrossRefPubMedPubMedCentralGoogle Scholar
  4. Blyn LB, Braaten BA, White-Ziegler CA, Rolfson DH, Low DA (1989) Phase-variation of pyelonephritis-associated pili in Escherichia coli: evidence for transcriptional regulation. EMBO J 8:613–620PubMedPubMedCentralGoogle Scholar
  5. Bohme K, Steinmann R, Kortmann J, Seekircher S, Heroven AK, Berger E, Pisano F, Thiermann T, Wolf-Watz H, Narberhaus F, Dersch P (2012) Concerted actions of a thermo-labile regulator and a unique intergenic RNA thermosensor control Yersinia virulence. PLoS Pathog 8:e1002518CrossRefPubMedPubMedCentralGoogle Scholar
  6. Bolotin A, Wincker P, Mauger S, Jaillon O, Malarme K, Weissenbach J, Ehrlich SD, Sorokin A (2001) The complete genome sequence of the lactic acid bacterium Lactococcus lactis ssp. lactis IL1403. Genome Res 11:731–753CrossRefPubMedPubMedCentralGoogle Scholar
  7. Bucca G, Smith CP, Alberti M, Seidita G, Passantino R, Puglia AM (1993) Cloning and sequencing of the dnaK region of Streptomyces coelicolor A3(2). Gene 130:141–144CrossRefPubMedGoogle Scholar
  8. Bucca G, Brassington AME, Schönfeld H-J, Smith CP (2000) The HspR regulon of Streptomyces coelicolor: a role for the DnaK chaperone as a transcriptional co-repressor. Mol Microbiol 38:1093–1103Streptomyces coelicolor Google Scholar
  9. Campbell EA, Tupy JL, Gruber TM, Wang S, Sharp MM, Gross CA, Darst SA (2003) Crystal structure of Escherichia coli sigma (E) with the cytoplasmic domain of its anti-sigma factor. Mol Cell 11:1067–1078CrossRefPubMedGoogle Scholar
  10. Cezairliyan BO, Sauer RT (2007) Inhibition of regulated proteolysis by RseB. Proc Natl Acad Sci U S A 104:3771–3776CrossRefPubMedPubMedCentralGoogle Scholar
  11. Chaba R, Grigorova IL, Flynn JM, Baker TA, Gross CA (2007) Design principles of the proteolytic cascade governing the σE-mediated envelope stress response in Escherichia coli: keys to graded, buffered, and rapid signal transduction. Genes Dev 21:124–136CrossRefPubMedPubMedCentralGoogle Scholar
  12. Cumberlidge AG, Isono K (1979) Ribosomal protein modification in Escherichia coli. I. A mutant lacking the N-terminal acetylation of protein S5 exhibits thermosensitivity. J Mol Biol 131:169–189Google Scholar
  13. Daguer JP, Chambert R, Petit-Glatron MF (2005) Increasing the stability of sacB transcript improves levansucrase production in Bacillus subtilis. Lett Appl Microbiol 41:221–226CrossRefPubMedGoogle Scholar
  14. Dame RT (2005) The role of nucleoid-associated proteins in the organization and compaction of bacterial chromatin. Mol Microbiol 56:858–870CrossRefPubMedGoogle Scholar
  15. De Las PA, Connolly L, Gross CA (1997) The σE-mediated response to extracytoplasmic stress in Escherichia coli is transduced by RseA and RseB, two negative regulators of σE. Mol Microbiol 24:373–385Google Scholar
  16. Derré I, Rapoport G, Msadek T (1999) CtsR, a novel regulator of stress and heat shock response, controls clp and molecular chaperone gene expression in gram-positive bacteria. Mol Microbiol 31:117–131Google Scholar
  17. Derré I, Rapoport G, Msadek T (2000) The CtsR regulator of stress response is active as a dimer and specifically degraded in vivo at 37°C. Mol Microbiol 38:335–347Google Scholar
  18. Dorman CJ (2004) H-NS: a universal regulator for a dynamic genome. Nat Rev Microbiol 2:391–400CrossRefPubMedGoogle Scholar
  19. Doyle DA, Lee A, Lewis J, Kim E, Sheng M, MacKinnon R (1996) Crystal structures of a complexed and peptide-free membrane protein-binding domain: molecular basis of peptide recognition by PDZ. Cell 85:1067–1076CrossRefPubMedGoogle Scholar
  20. Duong N, Osborne S, Bustamante VH, Tomljenovic AM, Puente JL, Coombes BK (2007) Thermosensing coordinates a cis-regulatory module for transcriptional activation of the intracellular virulence system in Salmonella enterica serovar Typhimurium. J Biol Chem 282:34077–34084CrossRefPubMedGoogle Scholar
  21. Ellis RJ, Van der Vies SM, Hemmingsen SM (1989) The molecular chaperone concept. Biochem Soc Symp 55:145–153PubMedGoogle Scholar
  22. Elsholz AK, Hempel K, Pother DC, Becher D, Hecker M, Gerth U (2011) CtsR inactivation during thiol-specific stress in low GC, Gram+ bacteria. Mol Microbiol 79:772–785CrossRefPubMedGoogle Scholar
  23. Falconi M, Colonna B, Prosseda G, Micheli G, Gualerzi CO (1998) Thermoregulation of Shigella and Escherichia coli EIEC pathogenicity. A temperature-dependent structural transition of DNA modulates accessibility of virF promoter to transcriptional repressor H-NS. EMBO J 17:7033–7043CrossRefPubMedPubMedCentralGoogle Scholar
  24. Fernandes ND, Wu QL, Kong D, Puyang X, Garg S, Husson RN (1999) A mycobacterial extracytoplasmic sigma factor involved in survival following heat shock and oxidative stress. J Bacteriol 181:4266–4274PubMedPubMedCentralGoogle Scholar
  25. Fuhrmann J, Schmidt A, Spiess S, Lehner A, Turgay K, Mechtler K, Charpentier E, Clausen T (2009) McsB is a protein arginine kinase that phosphorylates and inhibits the heat-shock regulator CtsR. Science 324:1323–1327CrossRefPubMedGoogle Scholar
  26. Gamer J, Bujard H, Bukau B (1992) Physical interactions between heat shock proteins DnaK, DnaJ, and GrpE and the bacterial heat shock transcription factor σ32. Cell 69:833–842CrossRefPubMedGoogle Scholar
  27. Gamer J, Multhaup G, Tomoyasu T, McCarty JS, Rüdiger S, Schönfeld HJ, Schirra C, Bujard H, Bukau B (1996) A cycle of binding and release of the DnaK, DnaJ and GrpE chaperones regulates activity of the Escherichia coli heat shock transcription factor σ32. EMBO J 15:607–617PubMedPubMedCentralGoogle Scholar
  28. Gomez JE, Chen JM, Bishai WR (1997) Sigma factors of Mycobacterium tuberculosis. Tuber Lung Dis 78:175–183CrossRefPubMedGoogle Scholar
  29. Guglielmi G, Mazodier P, Thompson CJ, Davies J (1991) A survey of the heat shock response in four Streptomyces species reveals two groEL-like genes and three GroEL-like proteins in Streptomyces albus. J Bacteriol 173:7374–7381CrossRefPubMedPubMedCentralGoogle Scholar
  30. Guisbert E, Herman C, Lu CZ, Gross CA (2004) A chaperone network controls the heat shock response in E-coli. Genes Dev 18:2812–2821CrossRefPubMedPubMedCentralGoogle Scholar
  31. Guisbert E, Yura T, Rhodius VA, Gross CA (2008) Convergence of molecular, modeling, and systems approaches for an understanding of the Escherichia coli heat shock response. Microbiol Mol Biol Rev 72:545–554CrossRefPubMedPubMedCentralGoogle Scholar
  32. Herman C, Thévenet D, D’Ari R, Bouloc P (1995) Degradation of σ32, the heat shock regulator in Escherichia coli, is governed by HflB. Proc Natl Acad Sci U S A 92:3516–3520Google Scholar
  33. Ho TD, Ellermeier CD (2012) Extra cytoplasmic function σ factor activation. Curr Opin Microbiol 15:182–188CrossRefPubMedPubMedCentralGoogle Scholar
  34. Homuth G, Masuda S, Mogk A, Kobayashi Y, Schumann W (1997) The dnaK operon of Bacillus subtilis is heptacistronic. J Bacteriol 179:1153–1164Google Scholar
  35. Kanehara K, Ito K, Akiyama Y (2002) YaeL (EcfE) activates the σE pathway of stress response through a site-2 cleavage of anti-σE, RseA. Genes Dev 16:2147–2155CrossRefPubMedPubMedCentralGoogle Scholar
  36. Kanehara K, Ito K, Akiyama K (2003) YaeL proteoylsis of RseA is controlled by the PDZ domain of YaeL and a Gln-rich region of RseA. EMBO J 22:6389–6398Google Scholar
  37. Kanemori M, Nishihara K, Yanagi H, Yura T (1997) Synergistic roles of Hs1VU and other ATP-dependent proteases in controlling in vivo turnover of σ32 and abnormal proteins in Escherichia coli. J Bacteriol 179:7219–7225Google Scholar
  38. Kim DY, Jin KS, Kwon E, Ree M, Kim KK (2007) Crystal structure of RseB and a model of its binding mode to RseA. Proc Natl Acad Sci U S A 104:8779–8784CrossRefPubMedPubMedCentralGoogle Scholar
  39. Kim DY, Kwon E, Choi J, Hwang HY, Kim KK (2010) Structural basis for the negative regulation of bacterial stress response by RseB. Protein Sci 19:1258–1263CrossRefPubMedPubMedCentralGoogle Scholar
  40. Kirstein J, Dougan DA, Gerth U, Hecker M, Turgay K (2007) The tyrosine kinase McsB is a regulated adaptor protein for ClpCP. EMBO J 26:2061–2070CrossRefPubMedPubMedCentralGoogle Scholar
  41. Kortmann J, Narberhaus F (2012) Bacterial RNA thermometers: molecular zippers and switches. Nat Rev Microbiol 10:255–265CrossRefPubMedGoogle Scholar
  42. Kouse AB, Righetti F, Kortmann J, Narberhaus F, Murphy ER (2013) RNA-mediated thermoregulation of iron-acquisition genes in Shigella dysenteriae and pathogenic Escherichia coli. PLoS One 8:e63781CrossRefPubMedPubMedCentralGoogle Scholar
  43. Krüger E, Msadek T, Hecker M (1996) Alternate promoters direct stress-induced transcription of the Bacillus subtilis clpC operon. Mol Microbiol 20:713–724CrossRefPubMedGoogle Scholar
  44. Krüger E, Msadek T, Ohlmeier S, Hecker M (1997) The Bacillus subtilis clpC operon encodes DNA repair and competence proteins. Microbiology 143:1309–1316CrossRefPubMedGoogle Scholar
  45. Lesley SA, Thompson NE, Burgess RR (2003) Studies of the role of the Escherichia coli heat shock regulatory protein sigma factor 32 by the use of monoclonal antibodies. J Biol Chem 262:5404–5407Google Scholar
  46. Lim B, Miyazaki R, Neher S, Siegele DA, Ito K, Walter P, Akiyama Y, Yura T, Gross CA (2013) Heat shock transcription factor sigma(32) co-opts the signal recognition particle to regulate protein homeostasis in E. coli. PLoS Biol 11:e1001735CrossRefPubMedPubMedCentralGoogle Scholar
  47. Lima S, Guo MS, Chaba R, Gross CA, Sauer RT (2013) Dual molecular signals mediate the bacterial response to outer-membrane stress. Science 340:837–841CrossRefPubMedPubMedCentralGoogle Scholar
  48. Lopez-Garcia P, Forterre P (2000) DNA topology and the thermal stress response, a tale from mesophiles and hyperthermophiles. BioEssays 22:738–746CrossRefPubMedGoogle Scholar
  49. Manganelli R, Dubnau E, Tyagi S, Kramer FR, Smith I (1999) Differential expression of 10 sigma factor genes in Mycobacterium tuberculosis. Mol Microbiol 31:715–724CrossRefPubMedGoogle Scholar
  50. Maurelli AT, Blackmon B, Curtiss R III (1984) Temperature-dependent expression of virulence genes in Shigella species. Infect Immun 43:195–201PubMedPubMedCentralGoogle Scholar
  51. Mecsas J, Rouviere PE, Erickson JW, Donohue TJ, Gross CA (1993) The activity of σE, an Escherichia coli heat-inducible σ-factor, is modulated by expression of outer membrane proteins. Genes Dev 7:2618–2628CrossRefPubMedGoogle Scholar
  52. Meyer AS, Baker TA (2011) Proteolysis in the Escherichia coli heat shock response: a player at many levels. Curr Opin Microbiol 14:194–199CrossRefPubMedPubMedCentralGoogle Scholar
  53. Missiakas D, Mayer MP, Lemaire M, Georgopoulos C, Raina S (1997) Modulation of the Escherichia coli σE (RpoE) heat-shock transcription-factor activity by the RseA, RseB and RseC proteins. Mol Microbiol 24:355–371CrossRefPubMedGoogle Scholar
  54. Miyazaki R, Yura T, Suzuki T, Dohmae N, Mori H, Akiyama Y (2016) A novel SRP recognition sequence in the homeostatic control region of heat shock transcription factor σ32. Sci Rep 6:24147CrossRefPubMedPubMedCentralGoogle Scholar
  55. Mizuno T (1987) Random cloning of bent DNA segments from Escherichia coli chromosome and primary characterization of their structures. Nucleic Acids Res 15:6827–6841CrossRefPubMedPubMedCentralGoogle Scholar
  56. Mogk A, Homuth G, Scholz C, Kim L, Schmid FX, Schumann W (1997) The GroE chaperonin machine is a major modulator of the CIRCE heat shock regulon of Bacillus subtilis. EMBO J 16:4579–4590CrossRefPubMedPubMedCentralGoogle Scholar
  57. Morita M, Kanemori M, Yanagi H, Yura T (1999a) Heat-induced synthesis of σ32 in Escherichia coli: structural and functional dissection of rpoH mRNA secondary structure. J Bacteriol 181:401–410PubMedPubMedCentralGoogle Scholar
  58. Morita MT, Tanaka Y, Kodama TS, Kyogoku Y, Yanagi H, Yura T (1999b) Translational induction of heat shock transcription factor σ32: evidence for a built-in RNA thermosensor. Genes Dev 13:655–665CrossRefPubMedPubMedCentralGoogle Scholar
  59. Mourino M, Munoa F, Balsalobre C, Diaz P, Madrid C, Juarez A (1994) Environmental regulation of alpha-haemolysin expression in Escherichia coli. Microb Pathog 16:249–259CrossRefPubMedGoogle Scholar
  60. Nagai H, Yuzawa H, Yura T (1991) Interplay of two cis-acting mRNA regions in translational control of σ32 synthesis during the heat shock response of Escherichia coli. Proc Natl Acad Sci U S A 88:10515–10519CrossRefPubMedPubMedCentralGoogle Scholar
  61. Nakahigashi K, Yanagi H, Yura T (1995) Isolation and sequence analysis of rpoH genes encoding σ32 homologs from gram negative bacteria: conserved mRNA and protein segments for heat shock regulation. Nucleic Acids Res 23:4383–4390PubMedPubMedCentralGoogle Scholar
  62. Narberhaus F, Käser R, Nocker A, Hennecke H (1998) A novel DNA element that controls bacterial heat shock gene expression. Mol Microbiol 28:315–323CrossRefPubMedGoogle Scholar
  63. Nickerson CA, Achberger EC (1995) Role of curved DNA in binding of Escherichia coli RNA polymerase to promoters. J Bacteriol 177:5756–5761CrossRefPubMedPubMedCentralGoogle Scholar
  64. Nocker A, Hausherr T, Balsiger S, Krstulovic NP, Hennecke H, Narberhaus F (2001) A mRNA-based thermosensor controls expression of rhizobial heat shock genes. Nucleic Acids Res 29:4800–4807CrossRefPubMedPubMedCentralGoogle Scholar
  65. Ochman H, Soncini FC, Solomon F, Groisman EA (1996) Identification of a pathogenicity island required for Salmonella survival in host cells. Proc Natl Acad Sci U S A 93:7800–7804CrossRefPubMedPubMedCentralGoogle Scholar
  66. Ono S, Goldberg MD, Olsson T, Esposito D, Hinton JC, Ladbury JE (2005) H-NS is a part of a thermally controlled mechanism for bacterial gene regulation. Biochem J 391:203–213CrossRefPubMedPubMedCentralGoogle Scholar
  67. Park ST, Kang CM, Husson RN (2008) Regulation of the SigH stress response regulon by an essential protein kinase in Mycobacterium tuberculosis. Proc Natl Acad Sci U S A 105:13105–13110CrossRefPubMedPubMedCentralGoogle Scholar
  68. Patra M, Roy SS, Dasgupta R, Basu T (2015) GroEL to DnaK chaperone network behind the stability modulation of sigma at physiological temperature in Escherichia coli. FEBS Lett 589(24 Pt B):4047–4052CrossRefPubMedGoogle Scholar
  69. Prosseda G, Falconi M, Giangrossi M, Gualerzi CO, Micheli G, Colonna B (2004) The virF promoter in Shigella: more than just a curved DNA stretch. Mol Microbiol 51:523–537CrossRefPubMedGoogle Scholar
  70. Pruss GJ, Drlica K (1989) DNA supercoiling and prokaryotic transcription. Cell 56:521–523CrossRefPubMedGoogle Scholar
  71. Rajaram H, Chaurasia AK, Apte SK (2014) Cyanobacterial heat-shock response: role and regulation of molecular chaperones. Microbiology 160:647–658CrossRefPubMedGoogle Scholar
  72. Raman S, Song T, Puyang X, Bardarov S, Jacobs WR Jr, Husson RN (2001) The alternative sigma factor SigH regulates major components of oxidative and heat stress responses in Mycobacterium tuberculosis. J Bacteriol 183:6119–6125CrossRefPubMedPubMedCentralGoogle Scholar
  73. Reischl S, Wiegert T, Schumann W (2002) Isolation and analysis of mutant alleles of the Bacillus subtilis HrcA repressor with reduced dependency on GroE function. J Biol Chem 277:32659–32667CrossRefPubMedGoogle Scholar
  74. Rinnenthal J, Klinkert B, Narberhaus F, Schwalbe H (2010) Direct observation of the temperature-induced melting process of the Salmonella fourU RNA thermometer at base-pair resolution. Nucleic Acids Res 38:3834–3847CrossRefPubMedPubMedCentralGoogle Scholar
  75. Sasakawa C, Kamata K, Sakai T, Makino S, Yamada M, Okada N, Yoshikawa M (1988) Virulence-associated genetic regions comprising 31 kilobases of the 230-kilobase plasmid in Shigella flexneri 2a. J Bacteriol 170:2480–2484CrossRefPubMedPubMedCentralGoogle Scholar
  76. Schmidt A, Schiesswohl M, Völker U, Hecker M, Schumann W (1992) Cloning, sequencing, mapping, and transcriptional analysis of the groESL operon from Bacillus subtilis. J Bacteriol 174:3993–3999CrossRefPubMedPubMedCentralGoogle Scholar
  77. Schumann W (2012) Thermosensor systems in eubacteria. Adv Exp Med Biol 739:1–16CrossRefPubMedGoogle Scholar
  78. Shea JE, Hensel M, Gleeson C, Holden DW (1996) Identification of a virulence locus encoding a second type III secretion system in Salmonella typhimurium. Proc Natl Acad Sci U S A 93:2593–2597CrossRefPubMedPubMedCentralGoogle Scholar
  79. Singh R, Anil KV, Das AK, Bansal R, Sarkar D (2014) A transcriptional co-repressor regulatory circuit controlling the heat-shock response of Mycobacterium tuberculosis. Mol Microbiol 94:450–465CrossRefPubMedGoogle Scholar
  80. Song T, Dove SL, Lee KH, Husson RN (2003) RshA, an anti-sigma factor that regulates the activity of the mycobacterial stress response sigma factor SigH. Mol Microbiol 50:949–959CrossRefPubMedGoogle Scholar
  81. Storz G, Hengge-Aronis R (2000) Bacterial stress responses. American Society for Microbiology, Washington, DCGoogle Scholar
  82. Tomoyasu T, Gamer J, Bukau B, Kanemori M, Mori H, Rutman AJ, Oppenheim AB, Yura T, Yamanaka K, Niki H, Hiraga S, Ogura T (1995) Escherichia coli FtsH is a membrane-bound, ATP-dependent protease which degrades the heat-shock transcription factor σ32. EMBO J 14:2551–2560PubMedPubMedCentralGoogle Scholar
  83. Tomoyasu T, Ogura T, Tatsuta T, Bukau B (1998) Levels of DnaK and DnaJ provide tight control of heat shock gene expression and protein repair in Escherichia coli. Mol Microbiol 30:567–582CrossRefPubMedGoogle Scholar
  84. Waldminghaus T, Heidrich N, Brantl S, Narberhaus F (2007) FourU: a novel type of RNA thermometer in Salmonella. Mol Microbiol 65:413–424CrossRefPubMedGoogle Scholar
  85. Walsh NP, Alba BM, Bose B, Gross CA, Sauer RT (2003) OMP peptide signals initiate the envelope-stress response by activating DegS protease via relief of inhibition mediated by its PDZ domain. Cell 113:61–71CrossRefPubMedGoogle Scholar
  86. Weber GG, Kortmann J, Narberhaus F, Klose KE (2014) RNA thermometer controls temperature-dependent virulence factor expression in Vibrio cholerae. Proc Natl Acad Sci U S A 111:14241–14246CrossRefPubMedPubMedCentralGoogle Scholar
  87. White-Ziegler CA, Blyn LB, Braaten BA, Low DA (1990) Identification of an Escherichia coli genetic locus involved in thermoregulation of the pap operon. J Bacteriol 172:1775–1782CrossRefPubMedPubMedCentralGoogle Scholar
  88. Xu X, Niu Y, Liang K, Wang J, Li X, Yang Y (2015) Heat shock transcription factor σ32 is targeted for degradation via an ubiquitin-like protein ThiS in Escherichia coli. Biochem Biophys Res Commun 459:240–245CrossRefPubMedGoogle Scholar
  89. Yura T, Nakahigashi K (1999) Regulation of the heat-shock response. Curr Opin Microbiol 2:153–158CrossRefPubMedGoogle Scholar
  90. Zuber U, Schumann W (1994) CIRCE, a novel heat shock element involved in regulation of heat shock operon dnaK of Bacillus subtilis. J Bacteriol 176:1359–1363CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2017

Authors and Affiliations

  1. 1.Institute of GeneticsUniversity of BayreuthBayreuthGermany

Personalised recommendations