Advertisement

Evolution of Multiple Chaperonins: Innovation of Evolutionary Capacitors

Chapter
Part of the Heat Shock Proteins book series (HESP, volume 11)

Abstract

Molecular chaperones and chaperonins are part of large and evolutionarily conserved protein families that are involved in a large variety of functions in the cell. Chief among these functions is their ability to assist other slow-folding proteins in acquiring their native conformation. Because of their roles in the cell, chaperonins have enthralled scientists for decades and are considered the most important quality control mechanisms of the cell. In this chapter, I present evidence that supports a remarkable expansion of chaperonin protein families through gene duplication. Because of their ability in modulating phenotype through genotype, chaperonins are potent capacitors of evolution, as they allow the survival of innovative mutations despite their destabilizing effects for protein structures. In this sense, chaperonins increase the resistance of proteins to mutations and fuel evolvability by enabling proteins for a wider exploration of genotypic network. The complexity of the range of functions in which chaperonins are involved and the latest studies magnify the importance of these molecules as moonlighting proteins involved in a wide variety of independent, however equally important, functions. Future studies will aim at understanding how these proteins give origin to novel functions and using these capacitors as a mean to define the functional landscape of the cell.

References

  1. Aguilar-Rodriguez J, Sabater-Munoz B, Montagud-Martinez R, Berlanga V, Alvarez-Ponce D, Wagner A, Fares MA (2016) The molecular chaperone DnaK is a source of mutational robustness. Genome Biol EvolGoogle Scholar
  2. Anfinsen CB (1973) Principles that govern the folding of protein chains. Science 181:223–230PubMedCrossRefGoogle Scholar
  3. Aoki S, Uehara K, Imafuku M, Hasebe M, Ito M (2004) Phylogeny and divergence of basal angiosperms inferred from APETALA3- and PISTILLATA-like MADS-box genes. J Plant Res 117:229–244PubMedGoogle Scholar
  4. Archibald JM, Logsdon JM, Doolittle WF (1999) Recurrent paralogy in the evolution of archaeal chaperonins. Curr Biol 9:1053–1056PubMedCrossRefGoogle Scholar
  5. Archibald JM, Logsdon JM Jr, Doolittle WF (2000) Origin and evolution of eukaryotic chaperonins: phylogenetic evidence for ancient duplications in CCT genes. Mol Biol Evol 17:1456–1466PubMedCrossRefGoogle Scholar
  6. Barkman T, Zhang J (2009) Evidence for escape from adaptive conflict? Nature 462:E1; discussion E2–3Google Scholar
  7. Bittner AN, Foltz A, Oke V (2007) Only one of five groEL genes is required for viability and successful symbiosis in Sinorhizobium meliloti. J Bacteriol 189:1884–1889PubMedCrossRefGoogle Scholar
  8. Blanc G, Wolfe KH (2004) Functional divergence of duplicated genes formed by polyploidy during Arabidopsis evolution. Plant Cell 16:1679–1691PubMedPubMedCentralCrossRefGoogle Scholar
  9. Bogumil D, Dagan T (2010) Chaperonin-dependent accelerated substitution rates in prokaryotes. Genome Biol Evol 2:602–608PubMedPubMedCentralCrossRefGoogle Scholar
  10. Bogumil D, Dagan T (2012) Cumulative impact of chaperone-mediated folding on genome evolution. Biochemistry 51:9941–9953PubMedCrossRefGoogle Scholar
  11. Braig K, Otwinowski Z, Hegde R, Boisvert DC, Joachimiak A, Horwich AL, Sigler PB (1994) The crystal structure of the bacterial chaperonin GroEL at 2.8 A. Nature 371:578–586PubMedCrossRefGoogle Scholar
  12. Brocchieri L, Karlin S (2000) Conservation among HSP60 sequences in relation to structure, function, and evolution. Protein Sci 9:476–486PubMedPubMedCentralCrossRefGoogle Scholar
  13. Clark GW, Tillier ER (2010) Loss and gain of GroEL in the Mollicutes. Biochem Cell Biol 88:185–194PubMedCrossRefGoogle Scholar
  14. Conant GC, Wolfe KH (2008) Turning a hobby into a job: how duplicated genes find new functions. Nat Rev Genet 9:938–950PubMedCrossRefGoogle Scholar
  15. Cong Y, Baker ML, Jakana J, Woolford D, Miller EJ, Reissmann S, Kumar RN, Redding-Johanson AM, Batth TS, Mukhopadhyay A, Ludtke SJ, Frydman J, Chiu W (2010) 4.0-A resolution cryo-EM structure of the mammalian chaperonin TRiC/CCT reveals its unique subunit arrangement. Proc Natl Acad Sci U S A 107:4967–4972PubMedPubMedCentralCrossRefGoogle Scholar
  16. Cui L, Wall PK, Leebens-Mack JH, Lindsay BG, Soltis DE, Doyle JJ, Soltis PS, Carlson JE, Arumuganathan K, Barakat A, Albert VA, Ma H, dePamphilis CW (2006) Widespread genome duplications throughout the history of flowering plants. Genome Res 16:738–749PubMedPubMedCentralCrossRefGoogle Scholar
  17. De Bruyn J, Soetaert K, Buyssens P, Calonne I, De Coene JL, Gallet X, Brasseur R, Wattiez R, Falmagne P, Montrozier H, Laneelle MA, Daffe M (2000) Evidence for specific and non-covalent binding of lipids to natural and recombinant Mycobacterium bovis BCG hsp60 proteins, and to the Escherichia coli homologue GroEL. Microbiology 146(Pt 7):1513–1524PubMedCrossRefGoogle Scholar
  18. de Visser JA, Hermisson J, Wagner GP, Ancel Meyers L, Bagheri-Chaichian H, Blanchard JL, Chao L, Cheverud JM, Elena SF, Fontana W, Gibson G, Hansen TF, Krakauer D, Lewontin RC, Ofria C, Rice SH, von Dassow G, Wagner A, Whitlock MC (2003) Perspective: evolution and detection of genetic robustness. Evolution 57:1959–1972PubMedGoogle Scholar
  19. Dekker C, Stirling PC, McCormack EA, Filmore H, Paul A, Brost RL, Costanzo M, Boone C, Leroux MR, Willison KR (2008) The interaction network of the chaperonin CCT. EMBO J 27:1827–1839PubMedPubMedCentralCrossRefGoogle Scholar
  20. Des Marais DL, Rausher MD (2008) Escape from adaptive conflict after duplication in an anthocyanin pathway gene. Nature 454:762–765PubMedGoogle Scholar
  21. Dill KA, Chan HS (1997) From Levinthal to pathways to funnels. Nat Struct Biol 4:10–19PubMedCrossRefGoogle Scholar
  22. Ditzel L, Lowe J, Stock D, Stetter KO, Huber H, Huber R, Steinbacher S (1998) Crystal structure of the thermosome, the archaeal chaperonin and homolog of CCT. Cell 93:125–138PubMedCrossRefGoogle Scholar
  23. Draghi JA, Parsons TL, Wagner GP, Plotkin JB (2010) Mutational robustness can facilitate adaptation. Nature 463:353–355PubMedPubMedCentralCrossRefGoogle Scholar
  24. Ellis RJ, Minton AP (2006) Protein aggregation in crowded environments. Biol Chem 387:485–497PubMedCrossRefGoogle Scholar
  25. Ensgraber M, Loos M (1992) A 66-kilodalton heat shock protein of Salmonella typhimurium is responsible for binding of the bacterium to intestinal mucus. Infect Immun 60:3072–3078PubMedPubMedCentralGoogle Scholar
  26. Fares MA (2015) The origins of mutational robustness. Trends Genet 31:373–381PubMedCrossRefGoogle Scholar
  27. Fares MA, McNally D (2006) CAPS: coevolution analysis using protein sequences. Bioinformatics 22:2821–2822PubMedCrossRefGoogle Scholar
  28. Fares MA, Travers SA (2006) A novel method for detecting intramolecular coevolution: adding a further dimension to selective constraints analyses. Genetics 173:9–23PubMedPubMedCentralCrossRefGoogle Scholar
  29. Fares MA, Barrio E, Sabater-Munoz B, Moya A (2002a) The evolution of the heat-shock protein GroEL from Buchnera, the primary endosymbiont of aphids, is governed by positive selection. Mol Biol Evol 19:1162–1170PubMedCrossRefGoogle Scholar
  30. Fares MA, Ruiz-Gonzalez MX, Moya A, Elena SF, Barrio E (2002b) Endosymbiotic bacteria: groEL buffers against deleterious mutations. Nature 417:398PubMedCrossRefGoogle Scholar
  31. Fares MA, Moya A, Barrio E (2005) Adaptive evolution in GroEL from distantly related endosymbiotic bacteria of insects. J Evol Biol 18:651–660PubMedCrossRefGoogle Scholar
  32. Fares MA, Keane OM, Toft C, Carretero-Paulet L, Jones GW (2013) The roles of whole-genome and small-scale duplications in the functional specialization of Saccharomyces cerevisiae genes. PLoS Genet 9:e1003176PubMedPubMedCentralCrossRefGoogle Scholar
  33. Force A, Lynch M, Pickett FB, Amores A, Yan YL, Postlethwait J (1999) Preservation of duplicate genes by complementary, degenerative mutations. Genetics 151:1531–1545PubMedPubMedCentralGoogle Scholar
  34. Francino MP (2005) An adaptive radiation model for the origin of new gene functions. Nat Genet 37:573–577PubMedCrossRefGoogle Scholar
  35. Friedland JS, Shattock RJ, Griffin GE (1993) Phagocytosis of Mycobacterium tuberculosis or particulate stimuli by human monocytic cells induces equivalent monocyte chemotactic protein-1 gene expression. Cytokine 5:150–156PubMedCrossRefGoogle Scholar
  36. Frydman J, Nimmesgern E, Erdjument-Bromage H, Wall JS, Tempst P, Hartl FU (1992) Function in protein folding of TRiC, a cytosolic ring complex containing TCP-1 and structurally related subunits. EMBO J 11:4767–4778PubMedPubMedCentralGoogle Scholar
  37. Fujiwara K, Ishihama Y, Nakahigashi K, Soga T, Taguchi H (2010) A systematic survey of in vivo obligate chaperonin-dependent substrates. EMBO J 29:1552–1564PubMedPubMedCentralCrossRefGoogle Scholar
  38. Gebauer M, Zeiner M, Gehring U (1998) Interference between proteins Hap46 and Hop/p60, which bind to different domains of the molecular chaperone hsp70/hsc70. Mol Cell Biol 18:6238–6244PubMedPubMedCentralCrossRefGoogle Scholar
  39. Geissler S, Siegers K, Schiebel E (1998) A novel protein complex promoting formation of functional alpha- and gamma-tubulin. EMBO J 17:952–966PubMedPubMedCentralCrossRefGoogle Scholar
  40. George R, Kelly SM, Price NC, Erbse A, Fisher M, Lund PA (2004) Three GroEL homologues from Rhizobium leguminosarum have distinct in vitro properties. Biochem Biophys Res Commun 324:822–828PubMedCrossRefGoogle Scholar
  41. Georgescauld F, Popova K, Gupta AJ, Bracher A, Engen JR, Hayer-Hartl M, Hartl FU (2014) GroEL/ES chaperonin modulates the mechanism and accelerates the rate of TIM-barrel domain folding. Cell 157:922–934PubMedPubMedCentralCrossRefGoogle Scholar
  42. Gerard HC, Whittum-Hudson JA, Schumacher HR, Hudson AP (2004) Differential expression of three Chlamydia trachomatis hsp60-encoding genes in active vs. persistent infections. Microb Pathog 36:35–39PubMedCrossRefGoogle Scholar
  43. Gershenson A, Gierasch LM (2011) Protein folding in the cell: challenges and progress. Curr Opin Struct Biol 21:32–41PubMedCrossRefGoogle Scholar
  44. Goodsell DS (1991) Inside a living cell. Trends Biochem Sci 16:203–206PubMedCrossRefGoogle Scholar
  45. Gu X (1999) Statistical methods for testing functional divergence after gene duplication. Mol Biol Evol 16:1664–1674PubMedCrossRefGoogle Scholar
  46. Gu Z, Steinmetz LM, Gu X, Scharfe C, Davis RW, Li WH (2003) Role of duplicate genes in genetic robustness against null mutations. Nature 421:63–66PubMedCrossRefGoogle Scholar
  47. Gutsche I, Essen LO, Baumeister W (1999) Group II chaperonins: new TRiC(k)s and turns of a protein folding machine. J Mol Biol 293:295–312PubMedCrossRefGoogle Scholar
  48. Hartl FU, Hayer-Hartl M (2009) Converging concepts of protein folding in vitro and in vivo. Nat Struct Mol Biol 16:574–581PubMedCrossRefGoogle Scholar
  49. Hartl FU, Bracher A, Hayer-Hartl M (2011) Molecular chaperones in protein folding and proteostasis. Nature 475:324–332PubMedCrossRefGoogle Scholar
  50. He X, Zhang J (2005) Rapid subfunctionalization accompanied by prolonged and substantial neofunctionalization in duplicate gene evolution. Genetics 169:1157–1164PubMedPubMedCentralCrossRefGoogle Scholar
  51. Henderson B, Fares MA, Lund PA (2013) Chaperonin 60: a paradoxical, evolutionarily conserved protein family with multiple moonlighting functions. Biol Rev Camb Philos Soc 88:955–987PubMedCrossRefGoogle Scholar
  52. Hirtreiter AM, Calloni G, Forner F, Scheibe B, Puype M, Vandekerckhove J, Mann M, Hartl FU, Hayer-Hartl M (2009) Differential substrate specificity of group I and group II chaperonins in the archaeon Methanosarcina mazei. Mol Microbiol 74:1152–1168PubMedCrossRefGoogle Scholar
  53. Hoegg S, Brinkmann H, Taylor JS, Meyer A (2004) Phylogenetic timing of the fish-specific genome duplication correlates with the diversification of teleost fish. J Mol Evol 59:190–203PubMedCrossRefGoogle Scholar
  54. Holub EB (2001) The arms race is ancient history in Arabidopsis, the wildflower. Nat Rev Genet 2:516–527PubMedCrossRefGoogle Scholar
  55. Horwich AL, Saibil HR (1998) The thermosome: chaperonin with a built-in lid. Nat Struct Biol 5:333–336PubMedCrossRefGoogle Scholar
  56. Houry WA, Frishman D, Eckerskorn C, Lottspeich F, Hartl FU (1999) Identification of in vivo substrates of the chaperonin GroEL. Nature 402:147–154PubMedCrossRefGoogle Scholar
  57. Hunt JF, Weaver AJ, Landry SJ, Gierasch L, Deisenhofer J (1996) The crystal structure of the GroES co-chaperonin at 2.8 A resolution. Nature 379:37–45PubMedCrossRefGoogle Scholar
  58. Innan H, Kondrashov F (2010) The evolution of gene duplications: classifying and distinguishing between models. Nat Rev Genet 11:97–108PubMedCrossRefGoogle Scholar
  59. Ishimoto T, Fujiwara K, Niwa T, Taguchi H (2014) Conversion of a chaperonin GroEL-independent protein into an obligate substrate. J Biol Chem 289:32073–32080PubMedPubMedCentralCrossRefGoogle Scholar
  60. Jeffery CJ (1999) Moonlighting proteins. Trends Biochem Sci 24:8–11PubMedCrossRefGoogle Scholar
  61. Jeffery CJ (2009) Moonlighting proteins—an update. Mol Biosyst 5:345–350PubMedCrossRefGoogle Scholar
  62. Kadibalban AS, Bogumil D, Landan G, Dagan T (2016) DnaK-dependent accelerated evolutionary rate in prokaryotes. Genome Biol Evol 8:1590–1599PubMedPubMedCentralCrossRefGoogle Scholar
  63. Kaneko T, Nakamura Y, Sato S, Minamisawa K, Uchiumi T, Sasamoto S, Watanabe A, Idesawa K, Iriguchi M, Kawashima K, Kohara M, Matsumoto M, Shimpo S, Tsuruoka H, Wada T, Yamada M, Tabata S (2002) Complete genomic sequence of nitrogen-fixing symbiotic bacterium Bradyrhizobium japonicum USDA110 (supplement). DNA Res 9:225–256PubMedCrossRefGoogle Scholar
  64. Karunakaran KP, Noguchi Y, Read TD, Cherkasov A, Kwee J, Shen C, Nelson CC, Brunham RC (2003) Molecular analysis of the multiple GroEL proteins of Chlamydiae. J Bacteriol 185:1958–1966PubMedPubMedCentralCrossRefGoogle Scholar
  65. Keane OM, Toft C, Carretero-Paulet L, Jones GW, Fares MA (2014) Preservation of genetic and regulatory robustness in ancient gene duplicates of Saccharomyces cerevisiae. Genome Res 24:1830–1841PubMedPubMedCentralCrossRefGoogle Scholar
  66. Kerner MJ, Naylor DJ, Ishihama Y, Maier T, Chang HC, Stines AP, Georgopoulos C, Frishman D, Hayer-Hartl M, Mann M, Hartl FU (2005) Proteome-wide analysis of chaperonin-dependent protein folding in Escherichia coli. Cell 122:209–220PubMedCrossRefGoogle Scholar
  67. Kim S, Yoo MJ, Albert VA, Farris JS, Soltis PS, Soltis DE (2004) Phylogeny and diversification of B-function MADS-box genes in angiosperms: evolutionary and functional implications of a 260-million-year-old duplication. Am J Bot 91:2102–2118PubMedCrossRefGoogle Scholar
  68. Klumpp M, Baumeister W, Essen LO (1997) Structure of the substrate binding domain of the thermosome, an archaeal group II chaperonin. Cell 91:263–270PubMedCrossRefGoogle Scholar
  69. Kramer EM, Dorit RL, Irish VF (1998) Molecular evolution of genes controlling petal and stamen development: duplication and divergence within the APETALA3 and PISTILLATA MADS-box gene lineages. Genetics 149:765–783PubMedPubMedCentralGoogle Scholar
  70. Kubota H, Hynes G, Carne A, Ashworth A, Willison K (1994) Identification of six Tcp-1-related genes encoding divergent subunits of the TCP-1-containing chaperonin. Curr Biol 4:89–99PubMedCrossRefGoogle Scholar
  71. Kubota H, Hynes G, Willison K (1995) The chaperonin containing t-complex polypeptide 1 (TCP-1). Multisubunit machinery assisting in protein folding and assembly in the eukaryotic cytosol. Eur J Biochem 230:3–16PubMedCrossRefGoogle Scholar
  72. Lachowiec J, Lemus T, Borenstein E, Queitsch C (2015) Hsp90 promotes kinase evolution. Mol Biol Evol 32:91–99PubMedCrossRefGoogle Scholar
  73. Lespinet O, Wolf YI, Koonin EV, Aravind L (2002) The role of lineage-specific gene family expansion in the evolution of eukaryotes. Genome Res 12:1048–1059PubMedPubMedCentralCrossRefGoogle Scholar
  74. Liou AK, McCormack EA, Willison KR (1998) The chaperonin containing TCP-1 (CCT) displays a single-ring mediated disassembly and reassembly cycle. Biol Chem 379:311–319PubMedCrossRefGoogle Scholar
  75. Liu H, Kovacs E, Lund PA (2009) Characterisation of mutations in GroES that allow GroEL to function as a single ring. FEBS Lett 583:2365–2371PubMedCrossRefGoogle Scholar
  76. Llorca O, Smyth MG, Carrascosa JL, Willison KR, Radermacher M, Steinbacher S, Valpuesta JM (1999) 3D reconstruction of the ATP-bound form of CCT reveals the asymmetric folding conformation of a type II chaperonin. Nat Struct Biol 6:639–642PubMedCrossRefGoogle Scholar
  77. Lopez T, Dalton K, Frydman J (2015) The mechanism and function of group II chaperonins. J Mol Biol 427:2919–2930PubMedPubMedCentralCrossRefGoogle Scholar
  78. Lund PA (2009) Multiple chaperonins in bacteria—why so many? FEMS Microbiol Rev 33:785–800PubMedCrossRefGoogle Scholar
  79. Lynch M, Conery JS (2000) The evolutionary fate and consequences of duplicate genes. Science 290:1151–1155PubMedCrossRefGoogle Scholar
  80. Maere S, De Bodt S, Raes J, Casneuf T, Van Montagu M, Kuiper M, Van de Peer Y (2005) Modeling gene and genome duplications in eukaryotes. Proc Natl Acad Sci U S A 102:5454–5459PubMedPubMedCentralCrossRefGoogle Scholar
  81. Maisnier-Patin S, Roth JR, Fredriksson A, Nystrom T, Berg OG, Andersson DI (2005) Genomic buffering mitigates the effects of deleterious mutations in bacteria. Nat Genet 37:1376–1379PubMedCrossRefGoogle Scholar
  82. Marcet-Houben M, Gabaldon T (2015) Beyond the whole-genome duplication: phylogenetic evidence for an ancient interspecies hybridization in the Baker’s yeast lineage. PLoS Biol 13:e1002220PubMedPubMedCentralCrossRefGoogle Scholar
  83. McNally D, Fares MA (2007) In silico identification of functional divergence between the multiple groEL gene paralogs in Chlamydiae. BMC Evol Biol 7:81PubMedPubMedCentralCrossRefGoogle Scholar
  84. Moore RC, Grant SR, Purugganan MD (2005) Molecular population genetics of redundant floral-regulatory genes in Arabidopsis thaliana. Mol Biol Evol 22:91–103PubMedCrossRefGoogle Scholar
  85. Moran NA (1996) Accelerated evolution and Muller’s rachet in endosymbiotic bacteria. Proc Natl Acad Sci U S A 93:2873–2878PubMedPubMedCentralCrossRefGoogle Scholar
  86. Ogawa J, Long SR (1995) The Rhizobium meliloti groELc locus is required for regulation of early nod genes by the transcription activator NodD. Genes Dev 9:714–729PubMedCrossRefGoogle Scholar
  87. Ohno S (1970) Evolution by gene duplication. Springer-Verlag, BerlinCrossRefGoogle Scholar
  88. Pereira JH, Ralston CY, Douglas NR, Kumar R, Lopez T, McAndrew RP, Knee KM, King JA, Frydman J, Adams PD (2012) Mechanism of nucleotide sensing in group II chaperonins. EMBO J 31:731–740PubMedCrossRefGoogle Scholar
  89. Piatigorsky J, O'Brien WE, Norman BL, Kalumuck K, Wistow GJ, Borras T, Nickerson JM, Wawrousek EF (1988) Gene sharing by delta-crystallin and argininosuccinate lyase. Proc Natl Acad Sci U S A 85:3479–3483PubMedPubMedCentralCrossRefGoogle Scholar
  90. Purugganan MD, Rounsley SD, Schmidt RJ, Yanofsky MF (1995) Molecular evolution of flower development: diversification of the plant MADS-box regulatory gene family. Genetics 140:345–356PubMedPubMedCentralGoogle Scholar
  91. Queitsch C, Sangster TA, Lindquist S (2002) Hsp90 as a capacitor of phenotypic variation. Nature 417:618–624PubMedCrossRefGoogle Scholar
  92. Ranson NA, White HE, Saibil HR (1998) Chaperonins. Biochem J 333(Pt 2):233–242PubMedPubMedCentralCrossRefGoogle Scholar
  93. Reissmann S, Parnot C, Booth CR, Chiu W, Frydman J (2007) Essential function of the built-in lid in the allosteric regulation of eukaryotic and archaeal chaperonins. Nat Struct Mol Biol 14:432–440PubMedPubMedCentralCrossRefGoogle Scholar
  94. Rodriguez-Quinones F, Maguire M, Wallington EJ, Gould PS, Yerko V, Downie JA, Lund PA (2005) Two of the three groEL homologues in Rhizobium leguminosarum are dispensable for normal growth. Arch Microbiol 183:253–265PubMedCrossRefGoogle Scholar
  95. Rohner N, Jarosz DF, Kowalko JE, Yoshizawa M, Jeffery WR, Borowsky RL, Lindquist S, Tabin CJ (2013) Cryptic variation in morphological evolution: HSP90 as a capacitor for loss of eyes in cavefish. Science 342:1372–1375PubMedPubMedCentralCrossRefGoogle Scholar
  96. Roque E, Fares MA, Yenush L, Rochina MC, Wen J, Mysore KS, Gomez-Mena C, Beltran JP, Canas LA (2016) Evolution by gene duplication of Medicago truncatula PISTILLATA-like transcription factors. J Exp Bot 67:1805–1817PubMedPubMedCentralCrossRefGoogle Scholar
  97. Ruano-Rubio V, Fares MA (2007) Testing the neutral fixation of hetero-oligomerism in the archaeal chaperonin CCT. Mol Biol Evol 24:1384–1396PubMedCrossRefGoogle Scholar
  98. Ruiz-Gonzalez MX, Fares MA (2013) Coevolution analyses illuminate the dependencies between amino acid sites in the chaperonin system GroES-L. BMC Evol Biol 13:156PubMedPubMedCentralCrossRefGoogle Scholar
  99. Rutherford SL, Lindquist S (1998) Hsp90 as a capacitor for morphological evolution. Nature 396:336–342PubMedCrossRefGoogle Scholar
  100. Sabater-Munoz B, Prats-Escriche M, Montagud-Martinez R, Lopez-Cerdan A, Toft C, Aguilar-Rodriguez J, Wagner A, Fares MA (2015) Fitness trade-offs determine the role of the molecular chaperonin GroEL in buffering mutations. Mol Biol Evol 32:2681–2693PubMedPubMedCentralCrossRefGoogle Scholar
  101. Saibil HR, Ranson NA (2002) The chaperonin folding machine. Trends Biochem Sci 27:627–632PubMedCrossRefGoogle Scholar
  102. Sangster TA, Lindquist S, Queitsch C (2004) Under cover: causes, effects and implications of Hsp90-mediated genetic capacitance. Bioessays 26:348–362PubMedCrossRefGoogle Scholar
  103. Sewell BT, Best RB, Chen S, Roseman AM, Farr GW, Horwich AL, Saibil HR (2004) A mutant chaperonin with rearranged inter-ring electrostatic contacts and temperature-sensitive dissociation. Nat Struct Mol Biol 11:1128–1133PubMedCrossRefGoogle Scholar
  104. Shah R, Large AT, Ursinus A, Lin B, Gowrinathan P, Martin J, Lund PA (2016) Replacement of GroEL in Escherichia coli by the group II chaperonin from the archaeon Methanococcus maripaludis. J BacteriolGoogle Scholar
  105. Siegers K, Waldmann T, Leroux MR, Grein K, Shevchenko A, Schiebel E, Hartl FU (1999) Compartmentation of protein folding in vivo: sequestration of non-native polypeptide by the chaperonin-GimC system. EMBO J 18:75–84PubMedPubMedCentralCrossRefGoogle Scholar
  106. Sigler PB, Xu Z, Rye HS, Burston SG, Fenton WA, Horwich AL (1998) Structure and function in GroEL-mediated protein folding. Annu Rev Biochem 67:581–608PubMedCrossRefGoogle Scholar
  107. Tian G, Vainberg IE, Tap WD, Lewis SA, Cowan NJ (1995) Specificity in chaperonin-mediated protein folding. Nature 375:250–253PubMedCrossRefGoogle Scholar
  108. Tokuriki N, Tawfik DS (2009a) Chaperonin overexpression promotes genetic variation and enzyme evolution. Nature 459:668–673PubMedCrossRefGoogle Scholar
  109. Tokuriki N, Tawfik DS (2009b) Stability effects of mutations and protein evolvability. Curr Opin Struct Biol 19:596–604PubMedCrossRefGoogle Scholar
  110. Trent JD, Nimmesgern E, Wall JS, Hartl FU, Horwich AL (1991) A molecular chaperone from a thermophilic archaebacterium is related to the eukaryotic protein t-complex polypeptide-1. Nature 354:490–493PubMedCrossRefGoogle Scholar
  111. Vainberg IE, Lewis SA, Rommelaere H, Ampe C, Vandekerckhove J, Klein HL, Cowan NJ (1998) Prefoldin, a chaperone that delivers unfolded proteins to cytosolic chaperonin. Cell 93:863–873PubMedCrossRefGoogle Scholar
  112. Wagner A (2005) Robustness and evolvability of living systems. Princeton University Press, PrincetonGoogle Scholar
  113. Wagner A (2012) The role of robustness in phenotypic adaptation and innovation. Proc Biol Sci 279:1249–1258PubMedPubMedCentralCrossRefGoogle Scholar
  114. Williams TA, Fares MA (2010) The effect of chaperonin buffering on protein evolution. Genome Biol Evol 2:609–619PubMedPubMedCentralCrossRefGoogle Scholar
  115. Wolfe KH (2015) Origin of the yeast whole-genome duplication. PLoS Biol 13:e1002221PubMedPubMedCentralCrossRefGoogle Scholar
  116. Wolfe KH, Shields DC (1997) Molecular evidence for an ancient duplication of the entire yeast genome. Nature 387:708–713PubMedCrossRefGoogle Scholar
  117. Wolynes PG, Onuchic JN, Thirumalai D (1995) Navigating the folding routes. Science 267:1619–1620PubMedCrossRefGoogle Scholar
  118. Xu Z, Horwich AL, Sigler PB (1997) The crystal structure of the asymmetric GroEL-GroES-(ADP)7 chaperonin complex. Nature 388:741–750PubMedCrossRefGoogle Scholar
  119. Yam AY, Xia Y, Lin HT, Burlingame A, Gerstein M, Frydman J (2008) Defining the TRiC/CCT interactome links chaperonin function to stabilization of newly made proteins with complex topologies. Nat Struct Mol Biol 15:1255–1262PubMedPubMedCentralCrossRefGoogle Scholar
  120. Young JC, Agashe VR, Siegers K, Hartl FU (2004) Pathways of chaperone-mediated protein folding in the cytosol. Nat Rev Mol Cell Biol 5:781–791PubMedCrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2017

Authors and Affiliations

  1. 1.Department of Abiotic StressInstituto de Biología Molecular y Celular de Plantas (CSIC-UPV)ValenciaSpain
  2. 2.Department of GeneticsSmurfit Institute of Genetics, University of Dublin, Trinity CollegeDublinIreland

Personalised recommendations