Skip to main content

Structure, Function and Evolution of the Hsp60 Chaperonins

  • Chapter
  • First Online:
Prokaryotic Chaperonins

Part of the book series: Heat Shock Proteins ((HESP,volume 11))

Abstract

In 1973, Christian Anfinsen and coworkers noted that accelerated protein folding in intact cells and cell extracts suggested that a “disulfide interchange enzyme” might be present in vivo. This concept of catalyzed folding foreshadowed the discovery of ubiquitous protein chaperones. The chaperonin GroEL/GroES was identified serendipitously when GroE mutants of E. coli failed to grow bacteriophage λ and were also temperature sensitive. The GroEL/GroES proved to be a ubiquitous chaperone and heat shock protein in bacteria and eukaryotic organelles, with two back-to-back rings of seven subunits each, forming a cavity that enclosed nonnative proteins, capped by the separate GroES lid complex. Group II chaperonins were subsequently discovered in all of the Archaea and in the Eukaryote cytoplasm with a similar cage-like shape, only with a “built-in” lid instead of the GroES module of Group I chaperonins. These chaperones have been intensely studied for three decades and have provided deep insights into protein-folding mechanisms. Despite this, some aspects of chaperonin-induced protein folding remain controversial.

The shared architecture and sequence similarity of two classes of chaperonins implies that they share a common ancestor. A recently identified, deeply branching clade of archaeal-like chaperonins encoded in bacteria may shed light on the early history of chaperonins. This clade shares many molecular properties with Group II chaperones; however, their phylogeny suggests that they arose early in prokaryotic evolution and may represent a vestige of the common ancestor of Group I and Group II chaperonins.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • An YJ, Rowland SE, Robb FT, Cha SS (2016) Purification, crystallization and preliminary X-ray crystallographic analysis of group III chaperonin from Carboxydothermus hydrogenoformans. J Microbiol 54(6):440–444., Accepted for publication

    Article  PubMed  CAS  Google Scholar 

  • Anfinsen CB (1973) Principles that govern the folding of protein chains. Science 181:223–230

    Article  CAS  PubMed  Google Scholar 

  • Angelucci F, Saccoccia F, Ardini M, Boumis G, Brunori M, Di Leandro L, Ippoliti R, Miele AE, Natoli G, Scotti S, Bellelli A (2013) Switching between the alternative structures and functions of a 2-Cys peroxiredoxin, by site-directed mutagenesis. J Mol Biol 425:4556–4568

    Article  CAS  PubMed  Google Scholar 

  • Apetri AC, Horwich AL (2008) Chaperonin chamber accelerates protein folding through passive action of preventing aggregation. Proc Natl Acad Sci 105:17351–17355

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Archibald JM, Roger AJ (2002) Gene duplication and gene conversion shape the evolution of archaeal chaperonins. J Mol Biol 316:1041–1050

    Article  CAS  PubMed  Google Scholar 

  • Archibald JM, Blouin C, Doolittle WF (2001) Gene duplication and the evolution of group II chaperonins: implications for structure and function. J Struct Biol 135:157–169

    Article  CAS  PubMed  Google Scholar 

  • Archibald JM, Logsdon JM Jr, Doolittle WF (1999) Recurrent paralogy in the evolution of archaeal chaperonins. Curr Biol 9:1053–1056

    Article  CAS  PubMed  Google Scholar 

  • Azia A, Unger R, Horovitz A (2012) What distinguishes GroEL substrates from other Escherichia coli proteins? FEBS J 279:543–550

    Article  CAS  PubMed  Google Scholar 

  • Barraclough R, Ellis RJ (1980) Protein synthesis in chloroplasts. IX. Assembly of newly-synthesized large subunits into ribulose bisphosphate carboxylase in isolated intact pea chloroplasts. Biochim Biophys Acta 608:19–31

    Article  CAS  PubMed  Google Scholar 

  • Beckmann RP, Mizzen LE, Welch WJ (1990) Interaction of Hsp 70 with newly synthesized proteins: implications for protein folding and assembly. Science 18:850–854

    Article  Google Scholar 

  • Bigotti MG, Clarke AR (2008) Chaperonins: the hunt for the group II mechanism. Arch Biochem Biophys 474:331–339

    Article  CAS  PubMed  Google Scholar 

  • Bochkareva ES, Lissin NM, Girshovich AS (1988) Transient association of newly synthesized unfolded proteins with the heat-shock GroEL protein. Nature 336:254–257

    Article  CAS  PubMed  Google Scholar 

  • Calloni G, Chen T, Schermann SM, Chang HC, Genevaux P, Agostini F, Tartaglia GG, Hayer-Hartl M, Hartl FU (2012) DnaK functions as a central hub in the E. coli chaperone network. Cell Rep 1:251–264

    Article  CAS  PubMed  Google Scholar 

  • Chandrasekhar GN, Tilly K, Woolford C, Hendrix R, Georgopoulos C (1986) Purification and properties of the groES Morphogenetic protein of Escherichia coli. J Biol Chem 261(26):12414–12419

    CAS  PubMed  Google Scholar 

  • Chaudhuri TK, Gupta P (2005) Factors governing the substrate recognition by GroEL chaperone: a sequence correlation approach. Cell Stress Chaperones 10:24–36

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chaudhuri TK, Farr GW, Fenton WA, Rospert S, Horwich AL (2001) GroEL/ES-mediated folding of a protein too large to be encapsulated. Cell 107:235–246

    Article  CAS  PubMed  Google Scholar 

  • Cuellar J, Martin-Benito J, Scheres SHW, Sousa R, Moro F, Lopez-Vinas E, Gomez-Puertas P, Muga A, Carrascosa JL, Valpuesta JM (2008) The structure of CCT-Hsc70 NBD suggests a mechanisms for Hsp70 delivery of substrates to the chaperonin. Nat Struct Mol Biol 15:858–864

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dekker C, Roe SM, McCormack EA, Beuron F, Willison KR (2011a) The crystal structure of yeast CCT reveals intrinsic asymmetry of eukaryotic cytosolic chaperonins. EMBO J 30:3078–3090

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dekker C, Willison KR, Taylor WR (2011b) On the evolutionary origin of the chaperonins. Proteins Struct Funct Bioinf 79:1172–1192

    Article  CAS  Google Scholar 

  • Deppenmeier U, Johann A, Hartsch T, Merkl R, Schmitz RA, Martinez-Arias R, Henne A, Wiezer A, Baeumer S, Jacobi C, Brueggemann H, Lienard T, Christmann A, Boemeke M, Steckel S, Bhattacharyya A, Lykidis A, Overbeek R, Klenk HP, Gunsalus RP, Fritz HJ, Gottschalk G (2002) The genome of Methanosarcina mazei: evidence for lateral gene transfer between bacteria and archaea. J Mol Microbiol Biotechnol 4:453–461

    CAS  PubMed  Google Scholar 

  • Dickson R, Weiss C, Howard RJ, Alldrick SP, Ellis RJ, Lorimer G, Azem A, Vitanen PV (2000) Reconstitution of higher plant chloroplast chaperonin 60 tetradecamers active in protein folding. J Biol Chem 275(16):11829–11835

    Article  CAS  PubMed  Google Scholar 

  • Douglas NR, Reissmann S, Zhang J, Chen B, Jakana J, Kumar R, Chiu W, Frydman J (2011) Dual action of ATP hydrolysis couples lid closure to substrate release into the group II chaperonin chamber. Cell 144(2):240–252

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ellis RJ (2013) Assembly chaperones: a perspective. Philos Trans R Soc B: Biol Sci 368(1617):20110398

    Article  CAS  Google Scholar 

  • Endo A, Kurusu Y (2007) Identification of in vivo substrates of the chaperonin GroEL from Bacillus subtilis. Biosci Biotechnol Biochem 71:1073–1077

    Article  CAS  PubMed  Google Scholar 

  • Ewalt KL, Hendrick JP, Houry WA, Hartl FU (1997) In vivo observation of polypeptide flux through the bacterial chaperonin system. Cell 90:491–500

    Article  CAS  PubMed  Google Scholar 

  • Fayet O, Ziegelhoffer T, Georgopoulos C (1989) The groES and groEL heat shock gene products of Escherichia coli are essential for bacterial growth at all temperatures. J Bacteriol 171:1379–1385

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fenton WA, Horwich AL (2003a) Chaperonin-mediated protein folding: fate of substrate polypeptide. Q Rev Biophys 36:229–256

    Article  CAS  PubMed  Google Scholar 

  • Fenton WA, Kashi Y, Furtak K, Horwich AL (1994) Residues in chaperonin GroEL required for polypeptide binding and release. Nature 371:614–619

    Article  CAS  PubMed  Google Scholar 

  • Fujiwara K, Ishihama Y, Nakahigashi K, Soga T, Taguchi H (2010) A systematic survey of in vivo obligate chaperonin-dependent substrates. EMBO J 29:1552–1564

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gao Y, Thomas JO, Chow RL, Lee GH, Cowan NJ (1992) A cytoplasmic chaperonin that catalyzes B-actin folding. Cell 69:1043–1050

    Article  CAS  PubMed  Google Scholar 

  • Georgopoulos CP, Hohn B (1978) Identification of a host protein necessary for bacteriophage morphogenesis (the groE gene product). Proc Natl Acad Sci 75:131–135

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Goldberger RF, Epstein CJ, Anfinsen CB (1963) Acceleration of reactivation of reduced bovine pancreatic ribonuclease by a microsomal system from rat liver. J Biol Chem 238:628

    CAS  PubMed  Google Scholar 

  • Guagliardi A, Cerchia L, Bartolucci S, Rossi M (1994) The chaperonin from the archaeon Sulfolobus solfataricus promotes correct refolding and prevents thermal denaturation in vitro. Protein Sci 3:1436–1443

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gupta RS (1995) Evolution of the chaperonin families (Hsp60, Hsp10 and Tcp-1) of proteins and the origin of eukaryotic cells. Mol Microbiol 15(1):1–11

    Article  CAS  PubMed  Google Scholar 

  • Gupta RS (1990) Sequence and structural homology between a mouse T-complex protein TCP-1 and the ‘chaperonin’ family of bacterial (GroEL, 60-65kDa heat shock antigen) and eukaryotic proteins. Biochem Int 20:833–841

    CAS  PubMed  Google Scholar 

  • Gupta RS, Picketts DJ, Ahmad S (1989) A novel ubiquitous protein ‘chaperonin’ supports the endosymbiotic origin of mitochondrion and plant chloroplast. Biochem Biophys Res Commun 163:780–787

    Article  CAS  PubMed  Google Scholar 

  • Gupta AJ, Halder S, Milicic G, Hartl FU, Hayer-Hartl M (2014) Active cage mechanism of chaperonin-assisted protein folding demonstrated at single-molecule level. J Mol Biol 426:2739–2754

    Article  CAS  PubMed  Google Scholar 

  • Hemmingsen SM, Woolford C, van der Vies SM, Tilly K, Dennis DT, Georgopoulos CP, Hendrix RW, Ellis RJ (1988) Homologous plant and bacterial proteins chaperone oligomeric protein assembly. Nature 333:330–334

    Article  CAS  PubMed  Google Scholar 

  • Hendrix RW (1979) Purification and properties of groE, a host protein involved in bacteriophage assembly. J Mol Biol 129:375–392

    Google Scholar 

  • Hendrix RW, Tsui L (1978) Role of the host in virus assembly: cloning of the Escherichia coli groE gene and identification of its protein product. Proc Natl Acad Sci U S A 75(1):136–139

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hansen WJ, Cowan NJ, Welch WJ (1999) Prefoldin-nascent chain complexes in the folding of cytoskeletal proteins. J Cell Biol 145:265–277

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Herendeen SL, VanBogelen RA, Neidhardt FC (1979) Levels of major proteins of Escherichia coli during growth at different temperatures. J Bacteriol 139:185–194

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hohn T, Hohn B, Engel A, Wurtz M (1979) Isolation and characterization of the host protein groE involved in bacteriophage Lamba assembly. J Mol Biol 129:359–373

    Article  CAS  PubMed  Google Scholar 

  • Horovitz A (1998) Structural aspects of GroEL function. Curr Opin Struct Biol 8(1):93–100

    Article  CAS  PubMed  Google Scholar 

  • Horst R, Bertelsen EB, Fiaux J, Wider G, Horwich AL, Wuethrich K (2005) Direct NMR observation of a substrate protein bound to the chaperonin GroEL. Proc Natl Acad Sci 102:12748–12753

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Horwich AL, Apetri AC, Fenton WA (2009) The GroEL/GroES cis cavity as a passive anti-aggregation device. FEBS Lett 583:2654–2662

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Houry WA, Frishman D, Eckerskorn C, Lottspeich F, Hartl FU (1999) Identification of in vivo substrates of the chaperonin GroEL. Nature 401:147–154

    Google Scholar 

  • Ishihama AT, Ikeuchi T, Yura T (1976) A novel adenosine triphosphatase isolated from RNA polymerase preparation of Escherichia coli I. Copurification and separation. J Biochem 79(5):917–925

    Article  CAS  PubMed  Google Scholar 

  • Jang HH, Kim SY, Park SK, Jeon HS, Lee YM, Jung JH, Lee SY, Chae HB, Jung YJ, Lee KO, Lim CO, Chung WS, Bahk JD, Yun DJ, Cho MJ, Lee SY (2006) Phosphorylation and concomitant structural changes in human 2-Cys peroxiredoxin isotype I differentially regulate its peroxidase and molecular chaperone functions. FEBS Lett 580:351–355

    Article  CAS  PubMed  Google Scholar 

  • Joachimiak LA, Walzthoeni T, Liu CW, Aebersold R, Frydman J (2014) The structural basis of substrate recognition by the eukaryotic chaperonin TRiC/CCT. Cell 159:1042–1055

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jones DT, Taylor WR, Thornton JM (1992) The rapid generation of mutation data matrices from protein sequences. Comput Appl Biosci 8:275–282

    CAS  PubMed  Google Scholar 

  • Kerner MJ, Naylor DJ, Ishihama Y, Maier T, Chang HC, Stines AP, Georgopoulos C, Frishman D, Hayer-Hartl M, Mann M, Hartl FU (2005) Proteome-wide analysis of chaperonin-dependent protein folding in Escherichia coli. Cell 122:209–220

    Article  CAS  PubMed  Google Scholar 

  • Kim PS, Baldwin RL (1982a) Specific intermediates in the folding reactions of small proteins and the mechanism of protein folding. Annu Rev Biochem 51:459–489

    Article  CAS  PubMed  Google Scholar 

  • Kim KM, Caetano-Anollés G (2012) The evolutionary history of protein fold families and proteomes confirms that the archaeal ancestor is more ancient than the ancestors of other superkingdoms. BMC Evol Biol 12:13

    Article  PubMed  PubMed Central  Google Scholar 

  • Kim S, Willison KR, Horwich AL (1994) Cytosolic chaperonin subunits have a conserved ATPase domain but diverged polypeptide-binding domains. Trends Biochem Sci 19:543–548

    Article  CAS  PubMed  Google Scholar 

  • Klunker D, Haas B, Hirtreiter A, Figueiredo L, Naylor DJ, Pfeifer G, Mueller V, Deppenmeier U, Gottschalk G, Hartle FU, Hayer-Hartl M (2003) Coexistence of group I and group II chaperonins in the archaeon Methanosarcina mazei. J Biol Chem 278:33256–33267

    Article  CAS  PubMed  Google Scholar 

  • Klumpp M, Baumeister W, Essen LO (1997) Structure of the substrate binding domain of the thermosome, an archaeal group II chaperonin. Cell 91:263–270

    Article  CAS  PubMed  Google Scholar 

  • Korobko I, Nadler-Holly M, Horovitz A (2016) Transient kinetic analysis of ATP hydrolysis by the CCT/TRiC chaperonin. J Mol Biol 428(22):4520–4527. Sep 26. Epub.

    Article  CAS  PubMed  Google Scholar 

  • Kumar CMS, Mande SC, Mahajan G (2015) Multiple chaperonins in bacteria- novel functions and non-canonical behaviors. Cell Stress Chaperones 20:555–574

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kurouski D, Luo H, Sereda V, Robb FT, Lednev IK (2012) Rapid degradation kinetics of amyloid fibrils under mild conditions by an archaeal chaperonin. Biochem Biophys Res Commun 422:97–102

    Article  CAS  PubMed  Google Scholar 

  • Kurouski D, Luo H, Sereda V, Robb FT, Lednev IK (2013) Deconstruction of stable cross-Beta fibrillar structures into toxic and nontoxic products using a mutated archaeal chaperonin. ACS Chem Biol 8(9):2095–2101

    Article  CAS  PubMed  Google Scholar 

  • Laksanalamai P, Narayan S, Luo H, Robb FT (2008) Chaperone action of a versatile small heat shock protein from Methanococcoides burtonii, a cold adapted archaeon. Proteins Struct Funct Bioinf 75:275–282

    Article  CAS  Google Scholar 

  • Laskey RA, Honda BM, Mills AD, Finch JT (1978) Nucleosomes are assembled by an acidic protein which binds histones and transfers them to DNA. Nature 275:416–420

    Article  CAS  PubMed  Google Scholar 

  • Leitner A, Joachimiak LA, Bracher A, Moenkemeyer L, Walzthoeni T, Chen B, Pechmann S, Holmes S, Cong Y, Ma B, Lim NCH, Jackson SE (2015) Mechanistic insights into the folding of knotted proteins in vitro and in vivo. J Mol Biol 427:248–258

    Article  CAS  Google Scholar 

  • Levinthal C (1968) Are there pathways for protein folding? J Chim Phys 65:44–45

    Article  Google Scholar 

  • Libich DS, Fawzi NL, Ying J, Clore GM (2013) Probing the transient dark state of substrate binding to GroEL by relaxation-based solution NMR. Proc Natl Acad Sci 110:11361–11366

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lim NCH, Jackson SE (2015) Mechanistic insights into the folding of knotted proteins in vitro and in vivo. J Mol Biol 427:248–258

    Article  CAS  PubMed  Google Scholar 

  • Lund PA (2009) Multiple chaperonins in bacteria—why so many? FEMS Microbiol Rev 33:785–800

    Article  CAS  PubMed  Google Scholar 

  • Macario AJL, Dugan CB, Macario EC (1991) A dnaK homolog in the archaeabacterium Methanosarcina mazei S6. Gene 108:133–137

    Article  CAS  PubMed  Google Scholar 

  • Marco S, Urena D, Carrascosa JL, Waldmann T, Peters J, Hegerl R, Pfeifer G, Stack-Kongehl H, Baumeister W (1994) The molecular chaperone TF55: assessment of symmetry. FEBS Lett 341:152–155

    Article  CAS  PubMed  Google Scholar 

  • Martel R, Cloney LP, Pelcher LE, Hemmingsen SM (1990) Unique composition of plastid chaperonin-60: alpha and beta polypeptide-encoding genes are highly divergent. Gene 94:181–187

    Article  CAS  PubMed  Google Scholar 

  • McMullin TW, Hallberg RL (1987) A normal mitochondrial protein is selectively synthesized and accumulated during heat shock in Tetrahymena thermophila. Mol Cell Biol 7:4414–4423

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Min W, Angileri F, Luo H, Lauria A, Shanmugasundaram M, Almerico AM, Cappello F, de Macario EC, Lednev IK, Macario AJ, Robb FT (2014) A human CCT5 gene mutation causing distal neuropathy impairs hexadecamer assembly in an archaeal model. Sci Rep 4:6688–6695

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Motojima F, Yoshida M (2010) Polypeptide in the chaperonin cage partly protrudes out and then folds inside or escapes outside. EMBO J 29:4008–4019

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Narberhaus F (1999) Negative regulation of bacterial heat shock genes. Mol Microbiol 31:1–8

    Article  CAS  PubMed  Google Scholar 

  • Neidhardt FC, VanBogelen RA, Vaughn V (1984) The genetics and regulation of heat-shock proteins. Annu Rev Genet 18:295–329

    Article  CAS  PubMed  Google Scholar 

  • Okochi M, Nomura T, Zako T, Arakawa T, Iizuka R, Ueda H, Funatsu T, Leroux M, Yohda M (2004) Kinetics and binding sites for interaction of the prefoldin with a group II chaperonin. J Biol Chem 279:31788–31795

    Article  CAS  PubMed  Google Scholar 

  • Parsell DA, Sauer RT (1989) Induction of a heat shock-like response by unfolded protein in Escherichia coli: dependence on protein level not protein degradation. Genes Dev 3:1226–1232

    Article  CAS  PubMed  Google Scholar 

  • Pereira JH, Ralston CY, Douglas NR, Meyer D, Knee KM, Goulet DR, King JA, Frydman J, Adams PD (2010) Crystal structures of a group II chaperonin reveal the open and closed states associated with the protein folding cycle. J Biol Chem 285:27958–27966

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Phipps BM, Hoffmann A, Stetter KO, Baumeister W (1991) A novel ATPase complex selectively accumulated upon heat shock is a major cellular component of thermophilic archaebacteria. EMBO J 10:1711–1722

    CAS  PubMed  PubMed Central  Google Scholar 

  • Phipps BM, Typke D, Hegerl R, Volker S, Hoffmann A, Stetter KO, Baumeister W (1993) Structure of a molecular chaperone from a thermophilic archaebacterium. Nature 361:475–477

    Article  CAS  Google Scholar 

  • Reissmann S, Parnot C, Booth CR, Chiu W, Frydman J (2007a) Essential fu nction of the built-in lid in the allosteric regulation of eukaryotic and archaeal chaperonins. Nat Struct Mol Biol 14:432–440

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rommelaere H, Van Troys M, Gao Y, Melki R, Cowan NJ, Vandekerckhove J, Ampe C (1993) Eukaryotic cytosolic chaperonin contains t-complex polypeptide 1 and seven related subunits. Proc Natl Acad Sci 90:11975–11979

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ruessmann F, Stemp MJ, Moenkemeyer L, Etchells SA, Bracher A, Hartl FU (2012) Folding of large multidomain proteins by partial encapsulation in the chaperonin TRiC/CCT. Proc Natl Acad Sci 109:21208–21215

    Article  CAS  Google Scholar 

  • Saccoccia F, Di Micco P, Boumis G, Brunori M, Koutris I, Miele AE, Morea V, Sriratana P, Williams DL, Bellelli A, Angelucci F (2012) Moonlighting by different stressor: crystal structure of the chaperone species of a 2-Cys peroxiredoxin. Structure 20:429–439

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schulz A, Schumann W (1996) HrcA, the first gene of the Bacillus subtilis dnaK operon encodes a negative regulator of class I heat shock genes. J Bacteriol 178:1088–1093

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sela M, White FH, Anfinsen CB (1957) Reductive cleavage of disulfide bridges in ribonuclease. Science 125:691

    Article  CAS  PubMed  Google Scholar 

  • Shimamura T, Koike-Takeshita A, Yokoyama K, Masui R, Murai N, Yoshida M, Taguchi H, Iwata S (2004) Crystal structure of the native chaperonin complex from Thermus thermophilus revealed unexpected asymmetry at the cis-cavity. Structure 12:1471–1480

    Article  CAS  PubMed  Google Scholar 

  • Shtilerman M, Lorimer GH, Englander SW (1999) Chaperonin function: folding by forced unfolding. Science 284:822–825

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Siegart R, Leroux MR, Scheufler C, Hartl FU, Moarefi I (2000) Structure of the molecular chaperone prefoldin: unique interaction of multiple coiled coil tentacles with unfolded proteins. Cell 103:621–632

    Article  Google Scholar 

  • Sparrer H, Rutkat K, Buchner J (1997) Catalysis of protein folding by symmetric chaperone complexes. Proc Natl Acad Sci 94:1096–1100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stan G, Brooks BR, Lorimer GH, Thirumalai D (2005) Identifying natural substrates for chaperonins using a sequence-based approach. Protein Sci 14:193–201

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stan G, Brooks BR, Lorimer GH, Thirumalai D (2006) Residues in substrate proteins that interact with GroEL in the capture process are buried in the native state. Proc Natl Acad Sci 103:4433–4438

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sternberg N (1973) Properties of a mutant of Escherichia coli defective in bacteriophage λ head formation (groE). J Mol Biol 76:1–23

    Article  CAS  PubMed  Google Scholar 

  • Sternlicht H, Farr GW, Sternlicht ML, Driscoll JK, Willison K, Yaffe MB (1993) The t-complex polypeptide 1 complex is a chaperonin for tubulin and actin in vivo. Proc Natl Acad Sci 90:9422–9426

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Techtmann SM (2009) A genomic and biochemical charactertization of carbon monoxide utilizing thermophilic bacteria. Dissertation, University of Maryland, Baltimore

    Google Scholar 

  • Techtmann SM, Robb FT (2010) Archaeal-like chaperonins in bacteria. Proc Natl Acad Sci 107:20269–20274

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Teixeira F, Castro H, Cruz T, Tse E, Koldewey P, Southworth DR, Tomas AM, Jakob U (2015) Mitochondrial peroxiredoxin functions as a crucial chaperone reservoir in Leishmani infantum. Proc Natl Acad Sci 112(7):E616–E624

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tilly K, Murialdo H, Georgopoulos C (1981) Identification of a second Escherichia coli groE gene whose product is necessary for bacteriophage morphogenesis. Proc Natl Acad Sci 78:1629–1633

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Trent JD, Nimmesgern E, Wall JS, Ulrich Hartl F, Horwich AL (1991) A molecular chaperone from a thermophilic archaebacterium is related to the eukaryotic protein t-complex polypeptide-1. Nature 354:490–493

    Article  CAS  PubMed  Google Scholar 

  • Tsytlonok M, Itzhaki LS (2013) The how’s and why’s of protein folding intermediates. Arch Biochem Biophys 531:14–23

    Article  CAS  PubMed  Google Scholar 

  • Vainberg IE, Lewis SA, Rommelaere H, Ampe C, Vandekerckhove J, Klein HL, Cowan NJ (1998) Prefoldin, a chaperone that delivers unfolded proteins to cytosolic chaperonin. Cell 93:863–873

    Article  CAS  PubMed  Google Scholar 

  • Venetianer P, Straub FB (1963) The enzymatic reactivation of reduced ribonuclease. Biochim Biophys Acta 67:166

    Article  CAS  PubMed  Google Scholar 

  • Waldinger D, Subramanian AR, Cleve H (1989) The polymorphic human chaperonin protein HuCha60 is a mitochondrial protein sensitive to heat shock and cell transformation. Eur J Cell Biol 50:435–441

    CAS  PubMed  Google Scholar 

  • Warnecke T (2012) Loss of the DnaK-DnaJ-GrpE chaperone system among the Aquificales. Mol Biol Evol 29:3485–3495

    Article  CAS  PubMed  Google Scholar 

  • Williams WT, Codoner FM, Toft C, Fares MA (2010) Two chaperonin systems in bacterial genomes with distinct ecological roles. Trends Genet 26:47–51

    Article  CAS  PubMed  Google Scholar 

  • Woese CR, Fox GE (1977) Phylogenetic structure of the prokaryotic domain: the primary kingdoms. Proc Natl Acad Sci 74:5088–5090

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Woese CR, Kandler O, Wheelis ML (1990) Towards a natural system of organisms: proposal for the domains archaea, bacteria, and eucarya. Proc Natl Acad Sci 87:4576–4579

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wright PE, Dyson JH (1999) Intrinsically unstructured proteins: re-assessing the protein structure-function paradigm. J Mol Biol 293:321–331

    Article  CAS  PubMed  Google Scholar 

  • Xu Z, Horwich AL, Sigler PB (1997) The crystal structure of the asymmetric GroEL-ES-(ADP)7 chaperonin complex. Nature 388:741–750

    Article  CAS  PubMed  Google Scholar 

  • Yang D, Ye X, Lorimer GH (2013) Symmetric GroEL: GroES2 complexes are the protein-folding functional form of the chaperonin nanomachine. Proc Natl Acad Sci 110(46):E4298–E4305

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yoshida T, Kawaguchi R, Taguchi H, Yoshida M, Yasunaga T, Wakabayshi T, Yohda M, Maruyama T (2002) Archaeal group II chaperonin mediates protein folding in the cis-cavity without a detachable GroES-like co-chaperonin. J Mol Biol 315:73–85

    Article  CAS  PubMed  Google Scholar 

  • Zweig M, Cummings DJ (1973) Cleavage of head and tail protein during bacteriophage T5 assembly: selective host involvement in the cleavage of a tail protein. J Mol Biol 80:505–518

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Frank T. Robb .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd.

About this chapter

Cite this chapter

Rowland, S.E., Robb, F.T. (2017). Structure, Function and Evolution of the Hsp60 Chaperonins. In: Kumar, C., Mande, S. (eds) Prokaryotic Chaperonins. Heat Shock Proteins, vol 11. Springer, Singapore. https://doi.org/10.1007/978-981-10-4651-3_1

Download citation

Publish with us

Policies and ethics