Skip to main content

Constrained Data Visualization Using Rational Bi-cubic Fractal Functions

  • Conference paper
  • First Online:

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 655))

Abstract

This paper addresses a method to obtain rational cubic fractal functions, which generate surfaces that lie above a plane via blending functions. In particular, the constrained bivariate interpolation discussed herein includes a method to construct fractal interpolation surfaces that preserve positivity inherent in a prescribed data set. The scaling factors and shape parameters involved in fractal boundary curves are constrained suitably such that these fractal boundary curves are above the plane whenever the given interpolation data along the grid lines are above the plane. Our rational cubic spline FIS is above the plane whenever the corresponding fractal boundary curves are above the plane. We illustrate our interpolation scheme with some numerical examples.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Barnsley, M.F.: Fractal functions and interpolation. Constr. Approx. 2(4), 303–329 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  2. Barnsley, M.F., Harrington, A.N.: The calculus of fractal functions. J. Approx. Theor. 57(1), 14–34 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  3. Böhm, W.: A survey of curve and surface methods in CAGD. Comput. Aided Geom. Des. 1, 1–60 (1984)

    Article  MATH  Google Scholar 

  4. Bouboulis, P., Dalla, L.: Fractal interpolation surfaces derived from fractal interpolation functions. J. Math. Anal. Appl. 336(2), 919–936 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  5. Chand, A.K.B., Kapoor, G.P.: Hidden variable bivariate fractal interpolation surfaces. Fractals 11, 277–288 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  6. Chand, A.K.B., Kapoor, G.P.: Generalized cubic spline fractal interpolation functions. SIAM J. Numer. Anal. 44(2), 655–676 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  7. Chand, A.K.B.: Natural cubic spline coalescence hidden variable fractal interpolation surfaces. Fractals 20(2), 117–131 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  8. Chand, A.K.B., Viswanathan, P.: A constructive approach to cubic Hermite fractal interpolation function and its constrained aspects. BIT Numer. Math. 53(4), 841–865 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  9. Chand, A.K.B., Vijender, N., Navascués, M.A.: Shape preservation of scientific data through rational fractal splines. Calcolo 51, 329–362 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  10. Chand, A.K.B., Vijender, N.: Positive blending Hermite rational cubic spline fractal interpolation surfaces. Calcolo 1, 1–24 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  11. Chand, A.K.B., Katiyar, S.K., Viswanathan, P.: Approximation using hidden variable fractal interpolation functions. J. Fractal Geom. 2(1), 81–114 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  12. Chand, A.K.B., Navascues, M.A., Viswanathan, P., Katiyar, S.K.: Fractal trigonometric polynomial for restricted range approximation. Fractals 24(2), 11 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  13. Casciola, G., Romani, L.: Rational interpolants with tension parameters. In: Lyche, T., Mazure, M.-L., Schumaker, L.L. (eds.) Curve and Surface Design. Modern Methods Mathematics, 41–50. Nashboro Press, Brentwood (2003).

    Google Scholar 

  14. Dalla, L.: Bivariate fractal interpolation functions on grids. Fractals 10(1), 53–58 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  15. Farin, G.: Curves and Surfaces for CAGD. Morgan Kaufmann, San Francisco (2002)

    Google Scholar 

  16. Feng, Z., Feng, Y., Yuan, Z.: Fractal interpolation surfaces with function vertical scaling factors. Appl. Math. Lett. 25, 1896–1900 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  17. Fritsch, F.N., Carlson, R.E.: Monotone piecewise cubic interpolations. SIAM J. Numer. Anal. 17(2), 238–246 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  18. Geronimo, J.S., Hardin, D.: Fractal interpolation surfaces and a related 2-D multiresolution analysis. J. Math. Anal. Appl. 176, 561–586 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  19. Geronimo, J.S., Hardin, D.: Fractal interpolation functions from \(R^n\) into \(R^m\) and their projections. Z. Anal. Anwendungen 12, 535–548 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  20. Katiyar, S.K., Chand, A.K.B., Navascués, M.A.: Hidden variable \({\mathbf{A}}\)-fractal functions and their monotonicity aspects. Rev. R. Acad. Cienc. Zaragoza 71, 7–30 (2016)

    Google Scholar 

  21. Malysz, R.: The Minkowski dimension of the bivariate fractal interpolation surfaces. Chaos Solitons Fractals 27, 1147–1156 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  22. Massopust, P.R.: Fractal surfaces. J. Math. Anal. Appl. 151, 275–290 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  23. Metzler, W., Yun, C.H.: Construction of fractal interpolation surfaces on rectangular grids. Int. J. Bifurcat. Chaos Appl. Sci. Eng. 20(12), 4079–4086 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  24. Navascués, M.A., Sebastián, M.V.: Smooth fractal interpolation. J. Inequal. Appl. 1–20 (2006). Article ID: 78734(1)

    Google Scholar 

  25. Navascues, M.A., Viswanathan, P., Chand, A.K.B., Sebastian, M.V., Katiyar, S.K.: Fractal bases for Banach spaces of smooth functions. Bull. Aust. Math. Soc. 92, 405–419 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  26. Schimdt, J.W., Heß, W.: Positivity of cubic polynomial on intervals and positive spline interpolation. BIT Numer. Anal. 28, 340–352 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  27. Sarfraz, M., Hussain, M.Z.: Data visualization using rational spline interpolation. J. Comput. Appl. Math. 189, 513–525 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  28. Sarfraz, M., Hussain, M.Z., Nisar, A.: Positive data modeling using spline function. Appl. Math. Comput. 216, 2036–2049 (2010)

    MathSciNet  MATH  Google Scholar 

  29. Shaikh, T., Sarfraz, M., Hussain, M.Z.: Shape preserving constrained data visualization using rational functions. J. Prime Res. Math. 7, 35–51 (2011)

    MathSciNet  MATH  Google Scholar 

  30. Sarfraz, M., Hussain, M.Z., Hussain, M.: Shape-preserving curve interpolation. J. Comp. Math. 89, 35–53 (2012)

    MathSciNet  MATH  Google Scholar 

  31. Songil, R.: A new construction of the fractal interpolation surface. Fractals 23, 12 (2015)

    MathSciNet  MATH  Google Scholar 

  32. Viswanathan, P., Chand, A.K.B.: Fractal rational functions and their approximation properties. J. Approx. Theor. 185, 31–50 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  33. Viswanathan, P., Chand, A.K.B., Navascués, M.A.: Fractal perturbation preserving fundamental shapes: bounds on the scale factors. J. Math. Anal. Appl. 419, 804–817 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  34. Xie, H., Sun, H.: The study on bivariate fractal interpolation functions and creation of fractal interpolated surfaces. Fractals 5, 625–634 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  35. Wang, H.Y., Yu, J.S.: Fractal interpolation functions with variable parameters and their analytical properties. J. Approx. Theor. 175, 1–18 (2013)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. K. Katiyar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd.

About this paper

Cite this paper

Katiyar, S.K., Reddy, K.M., Chand, A.K.B. (2017). Constrained Data Visualization Using Rational Bi-cubic Fractal Functions. In: Giri, D., Mohapatra, R., Begehr, H., Obaidat, M. (eds) Mathematics and Computing. ICMC 2017. Communications in Computer and Information Science, vol 655. Springer, Singapore. https://doi.org/10.1007/978-981-10-4642-1_23

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-4642-1_23

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-4641-4

  • Online ISBN: 978-981-10-4642-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics