Skip to main content

Fuzzy Logic Systems

  • Chapter
  • First Online:
  • 662 Accesses

Part of the book series: Nonlinear Physical Science ((NPS))

Abstract

The human mind has always shown a remarkable capability of coordinating a wide variety of physical and mental tasks without using any explicit measurements and computations.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Albus, J.: A therory of cerebellar function. Math. Biosci. 10, 25–61 (1971)

    Article  Google Scholar 

  2. Newell, A., Simon, H.: Human Problem Solving. Prentice-Hall (1972)

    Google Scholar 

  3. Zadeh, L.: Fuzzy sets. Inf. Control 8, 338–353 (1965)

    Article  MATH  Google Scholar 

  4. Mamdani, E.: Applications of fuzzy algorithms for control of a simple dynamic plant. Proc. IEEE 121, 1585–1588 (1974)

    Google Scholar 

  5. Verbruggen H., Babuŝka, R.: Fuzzy Logic Control: Advances in Applications. World Scientific (1999)

    Google Scholar 

  6. Yasunobu, S., Miyamoto, S., Ihara, S.: Train automatic operation system by fuzzy theory. In: Proceedings of 20th SICE, pp. 467–468 (1981)

    Google Scholar 

  7. Yamakawa, T.: Stabilization of an inverted pendulum by a high-speed fuzzy logic controller hardware system. Fuzzy Sets Syst. 32(2), 161–180. Elsevier (1989)

    Google Scholar 

  8. Rumerman, J.: NASA Launch Systems, Space Transportation/Human Spaceflight, and Space Science 1989–1998, NASA Historical Data Book, vol. VII, The NASA History Series, Volume VII, (2009)

    Google Scholar 

  9. Mamdani, E.: Applications of fuzzy logic to approximate reasoning using linguistic systems. IEEE Trans. Syst. Man Cybern. 26(12), 1182–1191 (1977)

    MATH  Google Scholar 

  10. Takagi, T., Sugeno, M.: Fuzzy identification of systems and its applications to modeling and control. IEEE Trans. Syst. Man Cybern. 15(1), 116–132 (1985)

    Article  MATH  Google Scholar 

  11. Kosko, B.: Fuzzy systems as universal approximators. IEEE Trans. Comput. 43(11), 1329–1333 (1994)

    Article  MATH  Google Scholar 

  12. Delgado, M., Duarte, O., Requena, I.: Arithmetic approach for the computing with words paradigm. Int. J. Intell. Syst. 21, 121–142. Wiley (2006)

    Google Scholar 

  13. Mendel, J.: Uncertain Rule-Based Fuzzy Logic Systems: Introduction and New Directions. Prentice-Hall (2001)

    Google Scholar 

  14. Passino, K., Yurkovich, S.: Fuzzy Control. Addison-Wesley (1998)

    Google Scholar 

  15. Mendel, J., Zadeh, L.: Trillas, E., Yager, R., Lawry, J., Hagras, H., Guadarrama, S.: What computing with words means to me. IEEE Comput. Intell. Mag. (2010)

    Google Scholar 

  16. Zadeh, L.: The concept of linguistic variable and its applications to approximate reasoning. Inf. Sci., Part I–III, pp. 199–249, pp. 301–357, pp. 43–80 (1975)

    Google Scholar 

  17. Karnik, N., Mendel, J., Liang, Q.: Type-2 fuzzy logic systems. IEEE Trans. Fuzzy Syst. 7(6), 643–658 (1999)

    Article  Google Scholar 

  18. John, R., Coupland, S.: Type 2 fuzzy logic: a historical view. IEEE Comput. Intell. Mag. (2007)

    Google Scholar 

  19. Mizumoto, M., Tanaka, K.: Fuzzy sets of type-2 under algebraic product and algebraic sum. Fuzzy Sets Syst. 5, 277–290 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  20. Dubois, D., Prade, H.: Fuzzy Sets and Systems: Theory and Applications. Academic Press (1982)

    Google Scholar 

  21. Turksen, I., Norwich, A.: Measurement of fuzziness, measurement of fuzziness. In: Proceedings of the International Conference on Policy Analysis and Information Systems, pp. 745–754 (1981)

    Google Scholar 

  22. Wagner, C., Hagras, H.: Novel methods for the design of general type-2 fuzzy sets based on device characteristics and linguistic labels surveys. In: Proceedings of the 2009 International Fuzzy Systems Association World Congress and the 2009 European Society for Fuzzy Logic and Technology Conference, pp. 537–543 (2009)

    Google Scholar 

  23. Wagner, C., Hagras, H.: Towards general type-2 fuzzy logic systems based on zSlices. IEEE Trans. Fuzzy Syst. 18(4) (2010)

    Google Scholar 

  24. Coupland, S., John, R.: Geometric type-1 and type-2 fuzzy logic. IEEE Trans. Fuzzy Syst. 15, 3–15 (2007)

    Article  MATH  Google Scholar 

  25. Wagner, C., Miller, S., Garibaldi, J., Anderson, D.: From interval-valued data to general type-2 fuzzy sets. IEEE Trans. Fuzzy Syst. 23(2), 248–269 (2015)

    Article  Google Scholar 

  26. Wu, D.; Tan, W.: Type-2 FLC modeling capability analysis. In: Proceeding of the 2005 IEEE International Conference on Fuzzy Systems, pp. 242–247 (2005)

    Google Scholar 

  27. Karnik, N., Mendel, J.: Centroid of a type-2 fuzzy set. Inf. Sci. 132, 195–220 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  28. Wu, D.: Approaches for reducing the computational cost of interval type-2 fuzzy logic systems: overview and comparisons. IEEE Trans. Fuzzy Syst. 21(1) (2013)

    Google Scholar 

  29. Hu, H., Wang, Y., Cai, Y.: Advantages of enhanced opposite direction searching algorithms for computing the centroid of an interval type-2 fuzzy set. Asian J. Control 14(6), 1–9 (2012)

    MathSciNet  MATH  Google Scholar 

  30. Wu, D.; Tan, W.: Computationally efficient type-reduction strategies for a type-2 fuzzy logic controller. In: Proceedings of IEEE International Conference in Fuzzy Systems, pp. 353–358 (2005)

    Google Scholar 

  31. Wu, D., Mendel, J.: Uncertainty bounds and their use in the design of interval type-2 fuzzy logic systems. IEEE Trans. Fuzzy Syst. 10(5), 622–639 (2002)

    Article  Google Scholar 

  32. Kayacan, E.: interval type-2 fuzzy logic systems: theory and design, Ph.D. Thesis, Bogaziçi University, Istanbul, Turkey (2011)

    Google Scholar 

  33. Nie, M.; Tan, W.: Towards an efficient type-reduction method for interval type-2 fuzzy logic systems. In: Proceedings of IEEE International Conference on Fuzzy Systems, pp. 1425–1432 (2008)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rómulo Antão .

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd. and Higher Education Press

About this chapter

Cite this chapter

Antão, R., Mota, A., Escadas Martins, R., Tenreiro Machado, J. (2017). Fuzzy Logic Systems. In: Type-2 Fuzzy Logic. Nonlinear Physical Science. Springer, Singapore. https://doi.org/10.1007/978-981-10-4633-9_2

Download citation

Publish with us

Policies and ethics