Advertisement

Topological Dirac and Weyl Semimetals

  • Shun-Qing ShenEmail author
Chapter
  • 3.5k Downloads
Part of the Springer Series in Solid-State Sciences book series (SSSOL, volume 187)

Abstract

A topological Dirac or Weyl semimetal is a topological phase of matter, in which the conduction and valence bands touch at a finite number of points, i.e., the Weyl nodes. Uniaxial rotation symmetries protect the nodes against gap formation. Topological Weyl semimetals host paired monopoles and antimonopoles of Berry curvature at the Weyl nodes and topologically protected Fermi arcs at certain surfaces. The chiral anomaly of the Weyl fermions , a pure quantum mechanical phenomenon, can be realized in solids, and is attributed to the exotic magneto-transport properties in Weyl and Dirac semimetals.

References

  1. 1.
    H. Weyl, Z. Phys. 56, 330 (1929)ADSCrossRefGoogle Scholar
  2. 2.
    H.B. Nielsen, M. Ninomiya, Nucl. Phys. B 193, 173 (1981)ADSCrossRefGoogle Scholar
  3. 3.
    S. Murakami, New J. Phys. 9, 356 (2007)ADSCrossRefGoogle Scholar
  4. 4.
    B.J. Yang, N. Nagaosa, Nat. Commun. 5, 4898 (2014)CrossRefGoogle Scholar
  5. 5.
    H.J. Kim et al., Phys. Rev. Lett. 111, 246603 (2013)ADSCrossRefGoogle Scholar
  6. 6.
    Z.J. Wang, H.M. Weng, Q. Wu, X. Dai, Z. Fang, Phys. Rev. B 88, 125427 (2013)ADSCrossRefGoogle Scholar
  7. 7.
    Z.J. Wang et al., Phys. Rev. B 85, 195320 (2012)ADSCrossRefGoogle Scholar
  8. 8.
    Z.K. Liu et al., Nat. Mater. 13, 677 (2014)ADSCrossRefGoogle Scholar
  9. 9.
    M. Neupane et al., Nat. Commun. 5, 3786 (2014)Google Scholar
  10. 10.
    S.M. Huang et al., Nat. Commun. 6, 7373 (2015)CrossRefGoogle Scholar
  11. 11.
    H.M. Weng et al., Phys Rev. X 5, 011029 (2015)Google Scholar
  12. 12.
    S.-Y. Xu et al., Science 349, 613 (2015)ADSCrossRefGoogle Scholar
  13. 13.
    B.Q. Lv et al., Phys. Rev. X 5, 031013 (2015)Google Scholar
  14. 14.
    A.H. Castro Neto, F. Guinea, N.M.R. Peres, K.S. Novoselov, A.K. Geim, Rev. Mod. Phys. 81, 109 (2009)ADSCrossRefGoogle Scholar
  15. 15.
    S.M. Young, C.L. Kane, Phys. Rev. Lett. 115, 126803 (2015)ADSCrossRefGoogle Scholar
  16. 16.
    H. Suzuura, T. Ando, Phys. Rev. Lett. 89, 266603 (2002)ADSCrossRefGoogle Scholar
  17. 17.
    S.-Q. Shen, Phys. Rev. B 70, 081311(R) (2004)ADSCrossRefGoogle Scholar
  18. 18.
    G.P. Mikitik, Y.V. Sharlai, Phys. Rev. Lett. 82, 2147 (1999)ADSCrossRefGoogle Scholar
  19. 19.
    K. Wakabayashi, K. Ichi Sasaki, T. Nakanishi, T. Enoki, Sci. Technol. Adv. Mater. 11, 054504 (2010)CrossRefGoogle Scholar
  20. 20.
    S. Ryu, Y. Hatsugai, Phys. Rev. Lett. 89, 077002 (2002)ADSCrossRefGoogle Scholar
  21. 21.
    P. Hosur, X. Qi, C. R. Phys. 14, 857 (2013)ADSCrossRefGoogle Scholar
  22. 22.
    S.Q. Shen, C.A. Li, Q. Niu, 2D Mater. 4, 035014 (2017)Google Scholar
  23. 23.
    D. Xiao, M.C. Chang, Q. Niu, Rev. Mod. Phys. 82, 1959 (2010)ADSCrossRefGoogle Scholar
  24. 24.
    H.Z. Lu, W.Y. Shan, W. Yao, Q. Niu, S.Q. Shen, Phys. Rev. B 81, 115407 (2010)ADSCrossRefGoogle Scholar
  25. 25.
    H. Li et al., Nat. Commun. 7, 10301 (2016)ADSCrossRefGoogle Scholar
  26. 26.
    Y. Hatsugai, Phys. Rev. Lett. 71, 3697 (1993)ADSMathSciNetCrossRefGoogle Scholar
  27. 27.
    S.B. Zhang, H.Z. Lu, S.Q. Shen, New J. Phys. 18, 053039 (2016)ADSCrossRefGoogle Scholar
  28. 28.
    S.Q. Shen, M. Ma, X.C. Xie, F.C. Zhang, Phys. Rev. Lett. 92, 256603 (2004)ADSCrossRefGoogle Scholar
  29. 29.
    A. Zee, Quantum Field Theory in a Nutshell (Princeton University Press, Princeton, 2003)zbMATHGoogle Scholar
  30. 30.
    S.L. Adler, Phys. Rev. 177, 2426 (1969)ADSCrossRefGoogle Scholar
  31. 31.
    J.S. Bell, R.W. Jackiw, Nuov. Cim. A 60, 4 (1969)Google Scholar
  32. 32.
    H.B. Nielsen, M. Ninomiya, Phys. Lett. B 130, 389 (1983)ADSMathSciNetCrossRefGoogle Scholar
  33. 33.
    A. Zee, Quantum Field Theory in a Nutshell (Princeton University Press, Princeton, 2010)zbMATHGoogle Scholar
  34. 34.
    H.Z. Lu, S.Q. Shen, Phys. Rev. B 92, 035203 (2015)ADSCrossRefGoogle Scholar
  35. 35.
    C.L. Zhang et al., Nat. Commun. 7, 10735 (2016)ADSCrossRefGoogle Scholar
  36. 36.
    J. Xiong et al., Science 350, 413 (2015)ADSMathSciNetCrossRefGoogle Scholar
  37. 37.
    Q. Li et al., Nat. Phys. 12, 550 (2016)CrossRefGoogle Scholar
  38. 38.
    K. Fukushima, D.E. Kharzeev, H.J. Warringa, Phys. Rev. D 78, 074033 (2008)ADSCrossRefGoogle Scholar
  39. 39.
    D.T. Son, B.Z. Spivak, Phys. Rev. B 88, 104412 (2013)ADSCrossRefGoogle Scholar
  40. 40.
    T. Liang, Q. Gibson, M.N. Ali, M. Liu, R.J. Cava, N.P. Ong, Nat. Mater. 14, 280 (2015)ADSCrossRefGoogle Scholar
  41. 41.
    c Shekhar et al., Nat. Phys. 11, 645–649 (2015)CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2017

Authors and Affiliations

  1. 1.Department of PhysicsThe University of Hong KongHong KongChina

Personalised recommendations