Advertisement

Introduction

  • Shun-Qing ShenEmail author
Chapter
  • 2.9k Downloads
Part of the Springer Series in Solid-State Sciences book series (SSSOL, volume 187)

Abstract

The discovery of topological insulators and superconductors is an important advance in condensed matter physics. Topological phases reflect global properties of the quantum states in materials, and the boundary states are characteristic of the materials. Such phases constitute a new branch in condensed matter physics. Here a historic development is briefly introduced, and the known family of phases in condensed matter are summarized.

References

  1. 1.
    E.H. Hall, Am. J. Math. 2, 287–292 (1879)CrossRefGoogle Scholar
  2. 2.
    E.H. Hall, Philos. Mag. 12, 157–172 (1881)CrossRefGoogle Scholar
  3. 3.
    R. Karplus, J.M. Luttinger, Phys. Rev. 95, 1154–1160 (1954)ADSCrossRefGoogle Scholar
  4. 4.
    M.C. Chang, Q. Niu, Phys. Rev. Lett. 75, 1348–1351 (1995)ADSCrossRefGoogle Scholar
  5. 5.
    D. Xiao, M.C. Chang, Q. Niu, Rev. Mod. Phys. 82, 1959–2007 (2010)ADSCrossRefGoogle Scholar
  6. 6.
    N. Nagaosa, J. Sinova, S. Onoda et al., Rev. Mod. Phys. 82, 1539–1592 (2010)ADSCrossRefGoogle Scholar
  7. 7.
    S.Q. Shen, Phys. Rev. Lett. 95, 187203 (2005)ADSCrossRefGoogle Scholar
  8. 8.
    M.I. Dyakonov, V.I. Perel, JETP Lett. 13, 467–469 (1971)ADSGoogle Scholar
  9. 9.
    M.I. Dyakonov, V.I. Perel, Phys. Lett. A 35, 459–460 (1971)ADSCrossRefGoogle Scholar
  10. 10.
    J.E. Hirsch, Phys. Rev. Lett. 83, 1834–1837 (1999)ADSMathSciNetCrossRefGoogle Scholar
  11. 11.
    S. Murakami, N. Nagaosa, S.C. Zhang, Science 301, 1348–1351 (2003)ADSCrossRefGoogle Scholar
  12. 12.
    J. Sinova, D. Culcer, Q. Niu et al., Phys. Rev. Lett. 92, 126603 (2004)ADSCrossRefGoogle Scholar
  13. 13.
    S.Q. Shen, M. Ma, X.C. Xie et al., Phys. Rev. Lett. 92, 256603 (2004)ADSCrossRefGoogle Scholar
  14. 14.
    Y.K. Kato, R.C. Myers, A.C. Gossard et al., Science 306, 1910–1913 (2004)ADSCrossRefGoogle Scholar
  15. 15.
    J. Wunderlich, B. Kaestner, J. Sinova et al., Phys. Rev. Lett. 94, 047204 (2005)ADSCrossRefGoogle Scholar
  16. 16.
    K. von Klitzing, G. Dorda, M. Pepper, Phys. Rev. Lett. 45, 494–497 (1980)ADSCrossRefGoogle Scholar
  17. 17.
    R.B. Laughlin, Phys. Rev. B 23, 5632–5633 (1981)ADSCrossRefGoogle Scholar
  18. 18.
    D.J. Thouless, M. Kohmoto, M.P. Nightingale et al., Phys. Rev. Lett. 49, 405–408 (1982)ADSCrossRefGoogle Scholar
  19. 19.
    B.I. Halperin, Phys. Rev. B 25, 2185–2190 (1982)ADSCrossRefGoogle Scholar
  20. 20.
    D.C. Tsui, H.L. Stormer, A.C. Gossard, Phys. Rev. Lett. 48, 1559–1562 (1982)ADSCrossRefGoogle Scholar
  21. 21.
    R.B. Laughlin, Phys. Rev. Lett. 50, 1395–1398 (1983)ADSCrossRefGoogle Scholar
  22. 22.
    J.K. Jain, Phys. Rev. Lett. 63, 199–202 (1989)ADSCrossRefGoogle Scholar
  23. 23.
    F.D.M. Haldane, Phys. Rev. Lett. 61, 2015–2018 (1988)ADSCrossRefGoogle Scholar
  24. 24.
    T. Jungwirth, Q. Niu, A.H. MacDonald, Phys. Rev. Lett. 88, 207208 (2002)ADSCrossRefGoogle Scholar
  25. 25.
    M. Onoda, N. Nagaosa, Phys. Rev. Lett. 90, 206601 (2003)ADSCrossRefGoogle Scholar
  26. 26.
    C.X. Liu, X.L. Qi, X. Dai et al., Phys. Rev. Lett. 101, 146802 (2008)ADSCrossRefGoogle Scholar
  27. 27.
    R. Yu, W. Zhang, H. Zhang et al., Science 329, 61–64 (2010)ADSCrossRefGoogle Scholar
  28. 28.
    R.L. Chu, J.R. Shi, S.Q. Shen, Phys. Rev. B 84, 085312 (2011)ADSCrossRefGoogle Scholar
  29. 29.
    L.A. Wray, S.Y. Xu, Y. Xia et al., Nat. Phys. 7, 32–37 (2011)CrossRefGoogle Scholar
  30. 30.
    C.Z. Chang, J. Zhang, X. Feng et al., Science 340, 167–170 (2013)ADSCrossRefGoogle Scholar
  31. 31.
    C.L. Kane, E.J. Mele, Phys. Rev. Lett. 95, 226801 (2005)ADSCrossRefGoogle Scholar
  32. 32.
    B.A. Bernevig, T.L. Hughes, S.C. Zhang, Science 314, 1757–1761 (2006)ADSCrossRefGoogle Scholar
  33. 33.
    M. Konig, S. Wiedmann, C. Brne et al., Science 318, 766–770 (2007)ADSCrossRefGoogle Scholar
  34. 34.
    D.N. Sheng, Z.Y. Weng, L. Sheng et al., Phys. Rev. Lett. 97, 036808 (2006)ADSCrossRefGoogle Scholar
  35. 35.
    C. Xu, J.E. Moore, Phys. Rev. B 73, 045322 (2006)ADSCrossRefGoogle Scholar
  36. 36.
    C. Wu, B.A. Bernevig, S.C. Zhang, Phys. Rev. Lett. 96, 106401 (2006)ADSCrossRefGoogle Scholar
  37. 37.
    M. Onoda, Y. Avishai, N. Nagaosa, Phys. Rev. Lett. 98, 076802 (2007)ADSCrossRefGoogle Scholar
  38. 38.
    I. Knez, R.R. Du, G. Sullivan, Phys. Rev. Lett. 107, 136603 (2011)ADSCrossRefGoogle Scholar
  39. 39.
    L.J. Du, I. Knez, G. Sullivan, R.R. Du, Phys. Rev. Lett. 114, 096802 (2015)ADSCrossRefGoogle Scholar
  40. 40.
    L. Fu, C.L. Kane, E.J. Mele, Phys. Rev. Lett. 98, 106803 (2007)ADSCrossRefGoogle Scholar
  41. 41.
    J.E. Moore, L. Balents, Phys. Rev. B 75, 121306(R) (2007)ADSCrossRefGoogle Scholar
  42. 42.
    S. Murakami, New J. Phys. 9, 356 (2007)ADSCrossRefGoogle Scholar
  43. 43.
    R. Roy, Phys. Rev. B 79, 195322 (2009)ADSCrossRefGoogle Scholar
  44. 44.
    C.L. Kane, E.J. Mele, Phys. Rev. Lett. 95, 146802 (2005)ADSCrossRefGoogle Scholar
  45. 45.
    L. Fu, C.L. Kane, Phys. Rev. B 76, 045302 (2007)ADSCrossRefGoogle Scholar
  46. 46.
    D. Hsieh, D. Qian, L. Wray et al., Nature (London) 452, 970–974 (2008)ADSCrossRefGoogle Scholar
  47. 47.
    H. Zhang, C.X. Liu, X.L. Qi et al., Nat. Phys. 5, 438–442 (2009)CrossRefGoogle Scholar
  48. 48.
    Y. Xia, D. Qian, D. Hsieh et al., Nat. Phys. 5, 398–402 (2009)CrossRefGoogle Scholar
  49. 49.
    Y.L. Chen, J.G. Analytis, J.H. Chu et al., Science 325, 178–181 (2009)ADSCrossRefGoogle Scholar
  50. 50.
    X.L. Qi, T.L. Hughes, S.C. Zhang, Phys. Rev. B 78, 195424 (2008)ADSCrossRefGoogle Scholar
  51. 51.
    X.L. Qi, R.D. Li, J.D. Zang et al., Science 323, 1184–1187 (2009)ADSMathSciNetCrossRefGoogle Scholar
  52. 52.
    A.M. Essin, J.E. Moore, Phys. Rev. Lett. 102, 146805 (2009)ADSCrossRefGoogle Scholar
  53. 53.
    A.J. Heeger, S. Kivelson, J.R. Schrieffer et al., Rev. Mod. Phys. 60, 781–850 (1988)ADSCrossRefGoogle Scholar
  54. 54.
    J. Li, R.L. Chu, J.K. Jain et al., Phys. Rev. Lett. 102, 136806 (2009)ADSCrossRefGoogle Scholar
  55. 55.
    H. Jiang, L. Wang, Q.F. Sun et al., Phys. Rev. B 80, 165316 (2009)ADSCrossRefGoogle Scholar
  56. 56.
    C.W. Groth, M. Wimmer, A.R. Akhmerov et al., Phys. Rev. Lett. 103, 196805 (2009)ADSCrossRefGoogle Scholar
  57. 57.
    H.M. Guo, G. Rosenberg, G. Refael et al., Phys. Rev. Lett. 105, 216601 (2010)ADSCrossRefGoogle Scholar
  58. 58.
    Y.Y. Zhang, R.L. Chu, F.C. Zhang et al., Phys. Rev. 85, 035107 (2012)CrossRefGoogle Scholar
  59. 59.
    A. Menth, E. Buehler, T.H. Geballe, Phys. Rev. Lett. 22, 295–297 (1969)ADSCrossRefGoogle Scholar
  60. 60.
    M. Dzero, K. Sun, V. Galitski et al., Phys. Rev. Lett. 104, 106408 (2010)ADSCrossRefGoogle Scholar
  61. 61.
    J. Botimer, S. Thomas, T. Grant, et al., arXiv: 1211.6769
  62. 62.
    X. Zhang, N.P. Butch, P. Syers et al., Phys. Rev. X 3, 011011 (2013)Google Scholar
  63. 63.
    S. Wolgast, C. Kurdak, K. Sun, et al., arXiv: 1211.5104
  64. 64.
    S. Raghu, X.L. Qi, C. Honerkamp et al., Phys. Rev. Lett. 100, 156401 (2008)ADSCrossRefGoogle Scholar
  65. 65.
    D. Pesin, L. Balents, Nat. Phys. 6, 376–381 (2010)CrossRefGoogle Scholar
  66. 66.
    R.S.K. Mong, A.M. Essin, J.E. Moore, Phys. Rev. B 81, 245209 (2010)ADSCrossRefGoogle Scholar
  67. 67.
    D.D. Osheroff, R.C. Richardson, D.M. Lee, Phys. Rev. Lett. 28, 885–888 (1972)ADSCrossRefGoogle Scholar
  68. 68.
    R. Balian, N.R. Werthamer, Phys. Rev. 131, 1553–1564 (1963)ADSCrossRefGoogle Scholar
  69. 69.
    A.J. Leggett, Rev. Mod. Phys. 76, 999–1011 (2004)ADSCrossRefGoogle Scholar
  70. 70.
    G.E. Volovik, The Universe in a Helium Droplet (Clarendon Press, Oxford, 2003)zbMATHGoogle Scholar
  71. 71.
    N. Read, D. Green, Phys. Rev. B 61, 10267–10297 (2000)ADSCrossRefGoogle Scholar
  72. 72.
    A.P. Schnyder, S. Ryu, A. Furusaki et al., Phys. Rev. B 78, 195125 (2008)ADSCrossRefGoogle Scholar
  73. 73.
    K. Ishida, M. Mukuda, Y. Kitaoka et al., Nature (London) 396, 658–660 (1998)ADSCrossRefGoogle Scholar
  74. 74.
    T.M. Rice, M. Sigrist, J. Phys. Condens. Matter 7, L643–648 (1995)ADSCrossRefGoogle Scholar
  75. 75.
    S. Kashiwaya, H. Kashiwaya, H. Kambara et al., Phys. Rev. Lett. 107, 077003 (2011)ADSCrossRefGoogle Scholar
  76. 76.
    Y.S. Hor, A.J. Williams, J.G. Checkelsky et al., Phys. Rev. Lett. 104, 057001 (2010)ADSCrossRefGoogle Scholar
  77. 77.
    L. Fu, E. Berg, Phys. Rev. Lett. 105, 097001 (2010)ADSCrossRefGoogle Scholar
  78. 78.
    L. Fu, C.L. Kane, Phys. Rev. Lett. 100, 096407 (2008)ADSCrossRefGoogle Scholar
  79. 79.
    G. Moore, N. Read, Nucl. Phys. B 360, 362–396 (1991)ADSCrossRefGoogle Scholar
  80. 80.
    A.Y. Kitaev, Ann. Phys. 303, 2–30 (2003)ADSCrossRefGoogle Scholar
  81. 81.
    D.A. Ivanov, Phys. Rev. Lett. 86, 268–271 (2001)ADSCrossRefGoogle Scholar
  82. 82.
    R.M. Lutchyn, J.D. Sau, S. Das Sarma, Phys. Rev. Lett. 105, 077001 (2010)ADSCrossRefGoogle Scholar
  83. 83.
    Y. Oreg, G. Rafael, F. von Oppen, Phys. Rev. Lett. 105, 177002 (2010)ADSCrossRefGoogle Scholar
  84. 84.
    V. Mourik, K. Zuo, S.M. Frolov et al., Science 336, 1003–1007 (2012)ADSCrossRefGoogle Scholar
  85. 85.
    M.T. Deng, C.L. Yu, G.Y. Huang et al., Nano Lett. 12, 6414–6419 (2012)ADSCrossRefGoogle Scholar
  86. 86.
    A. Das, Y. Ronen, Y. Most et al., Nat. Phys. 8, 887–895 (2012)CrossRefGoogle Scholar
  87. 87.
    L.P. Rokhinson, X. Liu, J.K. Furdyna, Nat. Phys. 8, 795–799 (2012)CrossRefGoogle Scholar
  88. 88.
    M. Franz, Nat. Nano. 8, 149–152 (2013)CrossRefGoogle Scholar
  89. 89.
    C. Herring, Phys. Rev. 52, 365 (1937)ADSCrossRefGoogle Scholar
  90. 90.
    H.B. Nielsen, M. Ninomiya, Phys. Lett. B 130, 389 (1983)ADSMathSciNetCrossRefGoogle Scholar
  91. 91.
    S. Murakami, New J. Phys. 9, 356 (2007)ADSCrossRefGoogle Scholar
  92. 92.
    X. Wan, A.M. Turner, A. Vishwanath, S.Y. Savrasov, Phys. Rev. B 83, 205101 (2011)ADSCrossRefGoogle Scholar
  93. 93.
    G. Xu, H.M. Weng, Z.J. Wang, X. Dai, Z. Fang, Phys. Rev. Lett. 107, 186806 (2011)ADSCrossRefGoogle Scholar
  94. 94.
    Z.J. Wang, H.M. Weng, Q. Wu, X. Dai, Z. Fang, Phys Rev. B 88, 125427 (2013)ADSCrossRefGoogle Scholar
  95. 95.
    Z.J. Wang et al., Phys. Rev. B 85, 195320 (2012)ADSCrossRefGoogle Scholar
  96. 96.
    Z.K. Liu et al., Nat. Mater. 13, 677 (2014)ADSCrossRefGoogle Scholar
  97. 97.
    M. Neupane et al., Nat. Commun. 5, 3786 (2014)Google Scholar
  98. 98.
    S.M. Huang et al., Nat. Commun. 6, 7373 (2015)CrossRefGoogle Scholar
  99. 99.
    H.M. Weng et al., Phys. Rev. X 5, 011029 (2015)Google Scholar
  100. 100.
    S.-Y. Xu et al., Science 349, 613 (2015)ADSCrossRefGoogle Scholar
  101. 101.
    B.Q. Lv et al., Phys. Rev. X 5, 031013 (2015)Google Scholar
  102. 102.
    J. Xiong et al., Science 350, 413 (2015)ADSMathSciNetCrossRefGoogle Scholar
  103. 103.
    C.L. Zhang et al., Nat. Commun. 7, 10735 (2016)ADSCrossRefGoogle Scholar
  104. 104.
    Q. Li et al., Nat. Phys. 12, 550 (2016)CrossRefGoogle Scholar
  105. 105.
    H. Li et al., Nat. Commun. 7, 10301 (2016)ADSCrossRefGoogle Scholar
  106. 106.
    P.A.M. Dirac, Proc. R. Soc. A 117, 610–624 (1928)ADSCrossRefGoogle Scholar
  107. 107.
    P.A.M. Dirac, Principles of Quantum Mechanics, 4th edn. (Clarendon Press, Oxford, 1982)zbMATHGoogle Scholar
  108. 108.
    R. Winkler, Spin-Orbit Coupling Effects in Two-Dimensional Electrons and Hole Systems (Springer, Berlin, 2003)CrossRefGoogle Scholar
  109. 109.
    S.Q. Shen, W.Y. Shan, H.Z. Lu, SPIN 01, 33–44 (2011)CrossRefGoogle Scholar
  110. 110.
    X.G. Wen, Quantum Field Theory of Many-Body Systems (Oxford University Press, New York, 2004)Google Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2017

Authors and Affiliations

  1. 1.Department of PhysicsThe University of Hong KongHong KongChina

Personalised recommendations