Skip to main content

A New Method and Strategy for Precise Ultra-Rapid Orbit Determination

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Electrical Engineering ((LNEE,volume 439))

Abstract

A new processing approach is proposed for the ultra-orbit orbit product of International GNSS Monitoring and Assessment System (iGMAS) Analysis Center. With this approach, a length of 22 h normal equation matrix and 3 h normal equation matrix are combined into a complete one to determinate the satellite orbits, which can satisfy the 2 h submit delay required by ultra-rapid products. In addition, one more hour observed data can be used compared with the traditional method with 24 h determination and 24 h prediction. Meanwhile the user available part in predicted orbit decreases from 2nd–8th to 1st–7th h. Details and procedures of this method are introduced in this paper, as well as the connection of orbit parameters when combining the normal matrices, especially the ambiguity parameters. To assess the impact of this new approach, the user available part in predicted orbit generated from the new and the old methods for 9 consecutive days is compared to the reference orbits. The results show that compared with the traditional method, the new method can improve the accuracy of quad-constellation predicted part of satellite orbit. This method is applicable to IGS analysis center equally.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Cai H, Chen K, Xu T et al (2015) The iGMAS combined products and the analysis of their consistency. China satellite navigation conference (CSNC) 2015 proceedings: Vol III. Springer, Berlin, pp 213–226

    Google Scholar 

  2. Rodger SH, Genkins J, Mcmahon I et al (2009) Ambiguity resolution in precise point positioning with hourly data. GPS Solutions 13(4):263–270

    Article  Google Scholar 

  3. Sobolev SV, Babeyko AY, Wang R et al (2007) Tsunami early warning using GPS‐Shield arrays. J Geophys Res: Solid Earth 112 (B8)

    Google Scholar 

  4. Chen Junping, Li Haojun, Bin Wu et al (2013) Performance of real-time precise point positioning. Mar Geodesy 36(1):98–108

    Article  Google Scholar 

  5. Yibin (2008) Theory and realization of GPS orbit integration. Geo-spatial Inform Sci 11(1):1–5

    Google Scholar 

  6. Beutler G, Brockmann E, Hugentobler U et al (1996) Combining consecutive short arcs into long arcs for precise and efficient GPS orbit determination. J Geodesy 70(5):287–299

    Article  Google Scholar 

  7. Brockmann E (1997) Combination of solutions for geodetic and geodynamic applications of the Global positioning system (GPS). Geod-Geophys Arb Schweiz Vol. 55:55

    Google Scholar 

  8. Dong D, Herring TA, King RW (1998) Estimating regional deformation from a combination of space and terrestrial geodetic data. J Geodesy 72(4):200–214

    Article  Google Scholar 

  9. Andersen PH (2000) Multi-level arc combination with stochastic parameters. J Geodesy 74(7):531–551

    Article  MATH  Google Scholar 

  10. Yibin Yao (2007) Theory and realization of GPS orbit integration. Geomatics Inf Sci Wuhan Univ 32(6):510–514

    Google Scholar 

  11. Yidong Lou, Chuang Shi, Maorong Ge (2008) GPS real time orbit determination and initial results analysis. Geomatics Inf Sci Wuhan Univ 33(8):815–817

    Google Scholar 

  12. Lutz S, Meindl M, Steigenberger P et al (2016) Impact of the arc length on GNSS analysis results. J Geodesy 90(4):1

    Article  Google Scholar 

  13. Liu Weiping, Hao Jinming, Yu Heli (2016) Solution method and precision analysis of multi-days orbit combination of BeiDou satellites. Acta Geodaetica et Cartographic Sinica. 45(10):1157–1164

    Google Scholar 

  14. Choi KK, Ray J, Griffiths J et al (2013) Evaluation of GPS orbit prediction strategies for the IGS Ultra-rapid products. GPS Solutions 17(3):403–412

    Article  Google Scholar 

  15. Duan B, Chen J (2016) Extended filter for real-time Multi-GNSS orbit determination. Igs Workshop

    Google Scholar 

  16. Mervart L, Weber G (2011) Real-time combination of GNSS orbit and clock correction streams using a Kalman filter approach. In: proceedings of international technical meeting of the satellite division of the institute of navigation. pp 707–711

    Google Scholar 

  17. Cai C, Liu Z, Xia P et al (2013) Cycle slip detection and repair for undifferenced GPS observations under high ionospheric activity. GPS Solutions 17(2):247–260

    Article  Google Scholar 

  18. Zhao Q, Sun B, Dai Z et al (2015) Real-time detection and repair of cycle slips in triple-frequency GNSS measurements. GPS Solutions 19(3):381–391

    Article  Google Scholar 

  19. Feng Y (2008) GNSS three carrier ambiguity resolution using ionosphere-reduced virtual signals. J Geodesy 82(12):847–862

    Article  Google Scholar 

  20. Fritsche M, Dietrich R, Knöfel C et al (2005) Impact of higher-order ionospheric terms on GPS estimates. Geophys Res Lett 32(23):113–133

    Article  Google Scholar 

  21. Li X, Ge M, Zhang H et al (2013) A method for improving uncalibrated phase delay estimation and ambiguity-fixing in real-time precise point positioning. J Geodesy 87(5):405–416

    Article  Google Scholar 

  22. Dong D-N, Bock Y (1989) Global positioning system network analysis with phase ambiguity resolution applied to crustal deformation studies in California. J Geophys Res Atmos 94(B4):3949–3966

    Google Scholar 

  23. Ge M, Gendt G, Dick G et al (2005) Improving carrier-phase ambiguity resolution in global GPS network solutions. J Geodesy 79(1):103–110

    Article  Google Scholar 

  24. Ge M, Gendt G, Rothacher M et al (2008) Resolution of GPS carrier-phase ambiguities in precise point positioning (PPP) with daily observations. J Geodesy 82(7):389–399

    Article  Google Scholar 

  25. Li Min (2011) Research on multi-GNSS precise orbit determination theory and application. Wuhan University

    Google Scholar 

  26. Guo J, Xu X, Zhao Q et al (2016) Precise orbit determination for quad-constellation satellites at Wuhan University: strategy, result validation, and comparison. J Geodesy 90(2):1–17

    Article  Google Scholar 

  27. Liu JN, Mao-Rong GE (2003) PANDA software and its preliminary result of positioning and orbit determination. Wuhan Univ J Nat Sci 8(2):603–609

    Article  Google Scholar 

  28. Shi C, Zhao Q, Hu Z et al (2013) Precise relative positioning using real tracking data from COMPASS GEO and IGSO satellites. GPS Solutions 17(1):103–119

    Article  Google Scholar 

  29. Shi C, Zhao QL, Li M et al (2012) Precise orbit determination of Beidou Satellites with precise positioning. Sci China: Earth Sci 55(7):1079–1086

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by iGMAS analysis center at Wuhan University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hongyang Ma .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd.

About this paper

Cite this paper

Ma, H., Zhao, Q., Xu, X. (2017). A New Method and Strategy for Precise Ultra-Rapid Orbit Determination. In: Sun, J., Liu, J., Yang, Y., Fan, S., Yu, W. (eds) China Satellite Navigation Conference (CSNC) 2017 Proceedings: Volume III. CSNC 2017. Lecture Notes in Electrical Engineering, vol 439. Springer, Singapore. https://doi.org/10.1007/978-981-10-4594-3_17

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-4594-3_17

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-4593-6

  • Online ISBN: 978-981-10-4594-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics